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Prefrontal tDCS for Smoking Cessation: Focus on the 
Number of Sessions and Motivation to Quit  
Marta Rebull1, Marien Gadea1,2*, Raúl Espert1,3, and Álvaro Pascual-Leone4 
1University of València, Department of Psychobiology, Valencia, Spain 
2Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain 
3Hospital Clínico Universitario de València, Neuropsychology Unit, Valencia, Spain 
4Hinda and Arthur Marcus Institute for Aging Research, Boston, Massachusetts, USA 
 

Abstract 
Neuromodulation through transcranial direct current stimulation (tDCS) has a B recommendation for the treatment 
of addiction according to therapeutic evidence guidance. We present an intervention, with randomization and 
placebo, to test the effectiveness of 10 tDCS sessions, without other treatment, spaced over 2 weeks, on tobacco 
consumption and craving, in 26 healthy smokers. The influence of motivation to quit, self-perceived efficacy, and 
previous physical dependence was assessed. Active dorsolateral prefrontal cortex (DLPFC, cathode F3/anode 
F4) tDCS (20 min at 2 mA) was compared to sham through pre–post design with 1-month follow-up. Data 
analysis included AUCg formulas, ANOVA's and linear regressions. The experimental group showed significantly 
less consumption than sham during intervention (p = .02, d = .95) but not at follow-up, as well as a significant 
decrease in craving (p = .04, η2 = .15). The most prominent predictors of effectiveness were the number of 
cigarettes regularly smoked (B = 4.27, p = .001) and self-reported motivation to quit (B = −6.48, p = .05). In sum, 
tDCS helps to reduce tobacco consumption and craving, but its benefits are not maintained over time. It would be 
necessary to increase the number of sessions and control motivation and the level of previous consumption. 
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Smoking is a leading preventable cause of disease 
and death, causing over 8 million deaths annually, 
including 1.3 million nonsmokers who are exposed 
to second-hand smoke (World Health Organization 
[WHO], 2023). Tobacco use disorder (TUD) is a 
chronic disorder characterized by compulsive 
tobacco-seeking and a loss of control over its use 
(5th ed.; DSM-5; Appendix A; American Psychiatric 
Association [APA], 2013). Noninvasive brain 
stimulation (NIBS) methods, such as transcranial 
direct current stimulation (tDCS), can target 
addiction neurocircuitry network and may help treat 
TUD and other substance use disorders (SUDs; 
(Mehta et al., 2024). NIBS targeting a central node 
of the addiction network as the dorsolateral 
prefrontal cortex (DLPFC) could improve the control 
of impulsive and risky behavior, allowing more 

functional decisions related to smoking. This could 
be possible since reward-based motivation is 
thought to be processed in the left DLPFC, while 
self-control is processed in the right DLPFC; so, 
many of the actual protocols seek to balance both 
sides (Balconi et al., 2014; Fecteau et al., 2014). In 
consonance with this, tDCS has shown evidence of 
being likely effective (level B) in treating SUDs by 
modulating DLPFC (cathode on left frontal, anode 
on right) according to therapeutic evidence guidance 
from Lefaucheur et al. (2017) and Fregni et al. 
(2021). 
 
Recent meta-analyses have focused on tobacco 
consumption and craving. Kang et al. (2019) 
analyzed 12 studies and found significant 
improvements in cue-induced craving and smoking 
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rates with tDCS. Another meta-analysis by Chen et 
al. (2020) included eight studies and demonstrated 
significant benefits of tDCS on craving, showing 
decreased craving and improved quality of life 
compared to a placebo group. Mehta et al. (2024) 
reviewed 11 studies on tDCS in TUD (n = 448 
participants including controls) showing positive 
outcomes (in tobacco craving and/or consumption) 
in seven studies, mainly with right anodal DLPFC 
stimulation and multisession tDCS protocols. 
However, the overall effect size was moderate 
though still considered clinically relevant (Hedge’s g 
of .50) and nonsignificant due to high variability 
among studies. Chan et al. (2024) examined 13 
studies (327 participants receiving active tDCS and 
284 sham) and found a modest reduction in craving 
with tDCS, but variability in study conditions affected 
significance. Overall, while tDCS shows potential for 
treating TUD, more research is needed to clarify 
which variables influence treatment outcomes. The 
meta-analysis by Mehta et al. (2024) examined 
multisession tDCS protocols, with most applying five 
sessions of active tDCS (Boggio et al., 2009; 
Fecteau et al., 2014; Müller et al., 2021; Smith et al., 
2015). Two studies found no effects on consumption 
or craving, while the other two showed positive 
effects, with one showing effects up to 4 days after 
stimulation ended. Other clinical trials with 
interventions of only three sessions showed either 
no results for smoking cessation (Falcone et al., 
2018) or a temporary reduction in consumption with 
no long-term effects (Alghamdi et al., 2019). A study 
by Perri and Perrotta (2021) applied five sessions 
and found a reduction in craving but not in 
consumption. These inconclusive results suggest 
that more than 3–5 sessions may be necessary for 
reliable tDCS outcomes. Additionally, while 
psychological factors such as motivation and self-
efficacy are crucial for smoking cessation, little 
research has explored their influence on tDCS 
outcomes. These are important to address given 
neuroimaging work showing the state of DLPFC is 
different depending on subjective motivation and 
resolve to stop addictive behavior (Silvanto & 
Pascual-Leone, 2008). Most studies also did not 
measure the long-term effects of tDCS beyond a few 
days. In sum, more research is needed to 
understand the interaction between nicotine 
addiction and tDCS and to develop an optimal 
treatment strategy. 
 
Our general aim is to study the effects of repeated 
tDCS sessions on smoking consumption pattern and 
tobacco craving in people with TUD, through an 
improved design (a longitudinal randomized 
placebo-controlled trial) which will include the effect 

of the neurostimulation at the time of the intervention 
and after a follow-up of a month. In addition, we 
wanted to analyze the influence of certain 
psychophysiological variables on the tDCS outcome 
regarding tobacco consumption. Finally, with the 
additional aim to obtain more descriptive information 
about the subjective reception of the stimulation, we 
recorded all sensations after the application of tDCS 
and evaluated their influence on the outcome. 
 

Method 
 
Participants 
From an initial pool of 67 individuals, 26 adults aged 
23–69 participated in the study, including 14 women 
and 12 men equally randomly divided between 
experimental and placebo groups (each n = 13). 
Participants were recruited via email following 
promotions with posters and social media ads. All 
met DSM-5 criteria for TUD and had smoked for at 
least a year. Safety measures excluded those who 
were pregnant; had significant clinical, psychiatric, or 
neurological illnesses (such as epilepsy or traumatic 
brain injury); had metallic brain or skull implants, a 
history of stroke with cerebral stent placement or in 
carotid arteries, dermatological sensitivities, or 
pacemakers. The design standardized participants’ 
physical dependence, motivation to quit smoking, 
and perceived self-efficacy. The flowchart for the 
selection of the participants according to CONSORT 
guidelines (Schulz et al., 2010) can be consulted  
in Figure 1. Descriptive data for demographical and 
all other variables of interest can be consulted in 
Table 1. 
 
Materials 
TDCS Apparatus. The study used the Brain Premier 
E1 tDCS device for neuromodulation, approved by 
the European Union for medical use and equipped 
with safety features. The device can provide a 
current output of 0.5 to 2 mA for 20 or 30 min, 
depending on the settings. For safety, stimulation 
starts with a gradual current increase over 30 s 
(ramp in) and decreases similarly before the session 
ends (ramp out). The study used round sponge 
electrodes measuring 1.5 in. in diameter. 
 
Psychometric Measures. The psychometric 
assessment instruments used in this protocol were 
as follows: (a) a smoking interview (adapted from 
Becoña, 1994): this is a semi-structured interview to 
ascertain sociodemographic data, smoking history 
and current tobacco use; (b) a self-recording weekly 
template (from Monday to Sunday) which facilitates 
the recording of the total number of cigarettes 
smoked each day; (c) a visual analog scale for
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Figure 1. Flowchart for the Selection of the Participants According to CONSORT Guidelines. 
 

 
 
 
Table 1 
Descriptive Data for Demographical and All Other Variables 

 ACTIVE tDCS  
Mean (SD) 

SHAM tDCS  
Mean (SD) 

t, p 

Gender 7 W & 6 M 7 W & 6 M  

Age 46 (13.08) 42.15 (11.16) t < 1 n.s. 

Years of Smoking 22.15 (13.70) 21.7 (10.28) t < 1 n.s. 

No. Cigarettes a Day 13.53 (4.09) 13.46 (4.74) t < 1 n.s. 

Physical Dependence 5.23 (1.96) 4.53 (2.56) t < 1 n.s. 

Motivation 7.46 (1.26) 7.69 (1.60) t < 1 n.s. 

Autoefficacy 5.38 (2.32) 6.46 (1.33) t(gl 24) = 1.44, p = .08 
Note. Descriptive data in means and standard deviations (SD) for demographic and other variables of interest at baseline, 
separated for the active tDCS group and the sham tDCS group. W = women, M = men. 
 
 
craving (VAS-C), that measures the desire to smoke, 
where 0 corresponds to the total absence of desire 
and 10 to the maximum; (d) the Richmond Test 
(Richmond et al., 1993) to evaluate the motivation to 
quit smoking, which consists of four items with two 
or three response alternatives and classifies 
motivation as low (0–6 points), medium (7–9 points) 
and high (10 points); (e) the Fagerström Test of 
Nicotine Dependence (FTDN; Heatherton et al., 
1991) to evaluate the physical dependence of 
smoking, which consists of six items with two or four 
response alternatives whose score ranges between 

0 and 10, where it is considered a high degree of 
nicotine dependence from 6 or more points, 
although low scores do not necessarily indicate a 
low degree of dependence; (f) a visual analog scale 
for the perceived autoefficacy (VAS-EFI) to quit the 
smoking habit, where 0 corresponds to zero 
perceived efficacy and 10 is the maximum; and 
finally, (g) the tDCS-Related Feelings Questionnaire 
(Antal et al., 2017), a questionnaire that assesses 
the patient's possible sensations of distress after the 
application of tDCS, according to four degrees of 
intensity. Please note that some of the dependent 
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measures were taken in a slightly different time of 
the entire experiment, according to the design 
detailed below. 
 
Design and Procedure 
The study was a longitudinal randomized  
placebo-controlled trial with participants divided 
equally between a control group (sham tDCS) and 
an experimental group (active tDCS). Three phases 
were evaluated: a baseline phase, an intervention 
phase, and a follow-up 1 month after intervention 
ended. Participants who responded to the call were 
invited to an initial interview to obtain general and 
nonspecific information about their habit, check 
inclusion criteria, receive information about the 
study, and sign consent documents where 
appropriate. During the following week, the selected 
participants completed the self-recording weekly 
template for daily cigarette consumption (baseline: 
seven measurements preintervention phase). 
Immediately after this, the participants attended a 
second interview, in which most of the above-listed 
psychometric measures were collected (smoking 
interview, Fagerström test, Richmond test, VAS-EFI 
scale). From this moment, the intervention phase 
started and lasted for 2 weeks. Participants received 
a total of 10 tDCS sessions at 2 mA for 20 min, one 
session at the same time every working day for 2 
weeks (see details of the protocol below). For the 
placebo condition, the same protocol was applied, 
but the tDCS device was disconnected (see details 
for the protocol below). During this intervention 
phase, we took two types of measures: on the one 
hand, the number of smoked cigarettes, which was 
recorded every day during the 2nd week of 
intervention (seven measurements, on-intervention 
phase); on the other hand, the level of craving, 
which was recorded with the VAS-C scale along the 
2 weeks of intervention (three measures each week, 
six measures in total). Right after the completion of 
this intervention phase, the participants fulfilled the 
Antal test to explore sensations after the tDCS. The 
follow-up phase occurred 1 month after intervention 
and involved recording cigarette consumption over a 
week (seven measures) and assessing craving 
levels and the psychometric measures of physical 
dependence, motivation, and perceived self-efficacy 
again (note that, while these follow-up measures 
were recorded, they were not included in the 
statistical analyses for the current study aims and 
objectives). 
 
TDCS Protocol 
The study involved placing electrodes over the 
DLPFC following the international 10–20 system of 
Jasper, with the anode on the right frontal (F4) and 

the cathode on the left frontal (F3). The electrodes 
(of 6 cm diameter) were soaked in a 0.9% sodium 
chloride saline solution and positioned on the scalp 
after the area was cleaned with 96% alcohol. 
Participants received 10 sessions of tDCS at 2 mA 
for 20 min each, one session per day (Monday to 
Friday) for 2 weeks. For the placebo group, the 
same protocol was followed, but the tDCS device 
was turned off. To match the somatosensory effects 
of tDCS, we used a saline solution with a small 
amount of capsaicin (0.75 mg/g cream, Viñas 
laboratories) to simulate the slight itching or burning 
sensation of tDCS (capsaicin is a cream indicated 
for the relief of moderate to severe pain in painful 
diabetic neuropathy, and it causes a slight sensation 
of itching or burning on the skin). During 
neurostimulation, participants sat comfortably in a 
chair and listened to relaxing music through 
earphones. At the end of the tDCS protocol, all 
participants, whether in the sham or active groups, 
completed the Antal questionnaire (2017) to assess 
sensations and possible side effects of the 
intervention. 
 
Ethics 
All participants were provided with information about 
the study and signed several consent forms, 
including the Informed Consent Document, 
Confidentiality Commitment, tDCS Protocol Consent, 
and Informed Consent for the Use of Clinical Data. 
The Human Research Ethics Committee of our 
university approved the project (H1549015474557), 
ensuring it adhered to the fundamental principles of 
the Declaration of Helsinki and the Council of 
Europe Convention on Human Rights. The study 
also complied with legal and ethical standards in 
biomedical research and bioethical data protection 
as established by local legislation. The research was 
conducted in accordance with the ethical and  
legal standards in force, including the Declaration  
of Helsinki. The raw data collected for the study 
have been deposited in an open repository 
according to the DORA and CoARA agreements, 
and can be consulted in https://doi.org/10.5281 
/zenodo.10960954. 
 
Statistical Analysis 
Statistical analyses were performed using SPSS 
statistical software version 28.0.1.1. Descriptive 
statistics were calculated for all variables, and 
Spearman ρ correlations were conducted to explore 
relationships among demographic and psychometric 
variables at baseline. To assess cigarette 
consumption, a single representative measure was 
calculated for each phase (baseline, intervention, 
and follow-up). For this purpose, the area under the 
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curve with respect to the ground (AUCg) was 
calculated as a dependent measure according to the 
formula of Pruessner et al. (2003) for each phase. 
Such measure has been previously applied mainly 
for the analyses of hormonal response, especially 
cortisol (Fekedulegn et al., 2007) but also for 
behavioral variables related to addiction (Amlung et 
al., 2015), and it is useful to analyze data sets 
comprised of repeated measurements over time 
where the researcher wants to explore whether any 
changes occurred (Rodriguez, 2023). Thus, all 
posterior analyses for smoking behavior were based 
on this measure. Mean differences were tested 
using repeated-measures ANOVA. Normality was 
assessed with the Shapiro-Wilk test, and sphericity 
with Mauchly's test. Adjustments were made using 
the Greenhouse-Geisser correction when 
necessary. Post-hoc comparisons used robust  
t-tests with bootstrapping (n = 1,000) or comparisons 
with estimated marginal means difference and 
Bonferroni corrections. Effect sizes were reported 
using η² or Cohen’s d. For craving, six raw scores 
were analyzed during the 2 weeks of tDCS using 
repeated-measures ANOVA with the same 
assumptions and post-hoc tests. Backward stepwise 
regression analyses were performed to assess the 
influence of baseline psychometric variables and the 
intervention on immediate and 1-month smoking 
outcomes. Data are reported in means and standard 
deviations (SD) or 95% confidence intervals when 
relevant. 
 

Results 
 
Descriptive Data and Relations Among Baseline 
Variables 
Table 1 provides descriptive data for the sample, 
divided by groups. At the beginning of the trial, there 
were no significant differences between the groups 
in terms of mean age, years of smoking, number of 
cigarettes smoked per day, physical dependence, 
motivation to quit smoking, and perceived  
self-efficacy (though the placebo group had a slightly 
higher mean for this last variable). Spearman’s ρ 
revealed significant correlations among some 
variables. Age was positively correlated with years of 
smoking (ρ = .66, p = .001), but not with the number 
of cigarettes smoked per day. Additionally, the 
number of cigarettes smoked per day was positively 
related to physical dependence (ρ = .50, p = .008). 
Finally, the initial motivation to quit smoking was 
positively related to perceived self-efficacy (ρ = .59, 
p = .001). No other significant relationships were 
observed at baseline. 
 

Cigarette Consumption 
The study aimed to evaluate whether daily tobacco 
consumption was reduced in the active tDCS group 
compared to the placebo group. Figure 2 displays 
daily cigarette consumption for each experimental 
phase, showing similar baseline consumption 
between groups. During the intervention phase, 
active tDCS caused a significant reduction in daily 
cigarette consumption, followed by a partial rebound 
during follow-up after the end of the intervention. To 
analyze the data, an AUCg was calculated for each 
phase and group. A repeated-measures ANOVA 
with Greenhouse-Geisser correction showed no 
significant main effect of the group (F < 1), but there 
was a significant main effect of the time of 
intervention, F(1, 62; 38, 9) = 47.49, p = .001,  
η2 = .66. Most interesting, the interaction between 
the time and group, F(1, 62; 38, 9) = 16.61,  
p = .001, η2 = .40, was significant, as shown in  
Figure 3. Post-hoc analysis using independent 
samples t-tests with bootstrapping revealed a 
significant difference between groups during the 
intervention phase, t(24) = 2.43, p = .02, d Cohen 
= .95, with the active tDCS group (Mean = 36.07; SD 
= 28.17) showing a greater reduction in cigarette 
consumption compared to the sham tDCS group 
(Mean = 61.80; SD = 25.74). No significant 
differences were found between groups at baseline 
(active tDCS: Mean = 84.11; SD = 25.70 vs. sham 
tDCS: Mean = 74.65; SD = 30.80) or follow-up 
(active tDCS: Mean = 54.88; SD = 34.93 vs. sham 
tDCS: Mean = 69.96; SD = 28.44). Further analysis 
of each group's data with estimated marginal means 
differences and Bonferroni corrections showed that 
the active tDCS group had significantly different 
means across all phases: baseline to intervention  
(I-J = 48.03; p = .001), intervention to follow-up  
(I-J = 18.80; p = .001), and baseline to follow-up  
(I-J = 29.23; p = .001) indicating a reduction in 
cigarette consumption during intervention and a 
partial increase during follow-up, although they did 
not recover the same level of consumption as in the 
baseline, maintaining a significantly lower level. In 
contrast, the sham tDCS group showed a different 
mean from baseline to intervention (I-J = 12.8;  
p = .04), and from intervention to follow-up  
(I-J = 8.15; p = .05) but no significant difference 
between baseline and follow-up, indicating some 
reduction during intervention but an increase back to 
baseline levels during follow-up. 
 
Craving 
The study’s second objective was to evaluate 
whether craving for tobacco consumption decreased 
during intervention and whether there were 
differences between groups. A repeated-measures 
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ANOVA showed a significant main effect for the 
factor “group,” F(1, 24) = 4.51, p = .04, η2 = .15, due 
to a higher overall level of craving in the control 
group (Mean = 6.87; 95% IC [6.15, 7.59]) compared 
with the active tDCS group (Mean = 5.82; 95% IC 
[5.09, 6.54]). The ANOVA also revealed a significant 
main effect, F(5, 120) = 9.29, p = .001,  
η2 = .27, for the factor “time” (six measures obtained 
across 2 weeks) that was nuanced by a significant 
interaction between the time and the group,  
F(5, 120) = 7.58, p = .001, η2 = .24. Post-hoc 
analyses with separate ANOVAs for each group 
found no significant differences among the six 
measures for the control group, F(5, 60) = 1.87,  
p = .11. In contrast, the active tDCS group showed a 
significant effect of “time,” F(5, 60) = 11.04, p = .001, 
η2 = .47. In the active tDCS group, estimated 
marginal means difference with Bonferroni 
corrections showed a significant decrease in craving 
from the initial measure (Monday of the 1st week of 
intervention) to later points in the intervention phase. 
Significant decreases were observed when 
comparing the initial craving to timepoint 4 (Monday 

of the 2nd week: I-J = 2.15; p = .01), as well as 
timepoint 4 to 5 (I-J = 2.15; p = .009) and to 6 (end 
of intervention, Friday of the 2nd week; I-J = 2.84;  
p = .002). Comparisons among measures taken 
during the 2nd week of intervention did not reach 
statistical significance. 
 
Regression Analysis on Smoking Behavior  
The study explored the influence of initial baseline 
measures (age, years of smoking, number of 
cigarettes smoked per day, physical dependence, 
motivation to quit smoking, and perceived  
self-efficacy) along with tDCS intervention (active or 
sham) on smoking consumption. Backward stepwise 
regression analyses were performed on the 
AUCgINTERVENTION (outcome during the 2nd 
week of intervention) and AUCgFOLLOW-UP 
(outcome after a month) dependent variables. For 
the AUCgINTERVENTION outcome, the best-fitting 
significant mode, F(5, 20) = 9.65; p = .001; R2 = .63, 
included intervention, age, number cigarettes 
smoked per day, and motivation to quit smoking.  

 
 

Figure 2. Number of Smoked Cigarettes a Day During Each Phase of the Trial, Separated for Each Group. 
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Figure 3. Mean AUCg (Area Under the Curve From the Ground) Regarding Cigarette 
Consumption for Each Phase and Group. 

 
Note. Comparison between groups was significant just for the intervention (see text). 

 
 

Figure 4. Evolution for Craving Experience Along the 2 Weeks of tDCS Intervention, Separated 
for Active and Sham Groups. 

 
Note. There were some statistical differences only in the evolution of the active tDCS group 
(see text). Bars: standard error of the mean. 
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The stronger predictors were for number of 
cigarettes smoked per day (B = 4.27, t = 5.15,  
p = .001) and the intervention itself (B = −27.49,  
t = −3.62, p = .002). Motivation to quit smoking  
(B = −6.48, t = −2.06, p = .05) and age (B = 0.661,  
t = 2.08, p = .05) were also modestly significant 
predictors. Regarding the AUCgFOLLOW-UP 
outcome, the best-fitting significant model,  
F(4, 21) = 8.28, p = .001, R2 = .53, included the 
intervention, age, number of cigarettes smoked per 
day and years of smoking as predictors. In this case, 
the number of cigarettes smoked per day (B = 5.74,  
t = 5.35, p = .001) was the most significant predictor, 
with intervention (B = −20.36, t = 2.31, p = .03) and 
age (B = 1.39, t = 2.44, p = .02) also being 
significant predictors.  
 
Sensations After the tDCS 
In both groups, most participants reported 
sensations just below the electrode (84.6% in the 
active group and 92.3% in the control group). A 
higher percentage of the control group (84.6%) 
experienced discomfort from the beginning 
compared to the active group (76.9%). However, for 
the active group, discomfort mostly persisted until 
the end (92.3%) compared to the control group 
(76.9%). Despite these differences, the discomfort 
did not affect more than half of the sample (53.8% in 
the active group and 61.5% in the control group) or 
affected them very little (46.1% in the active group 
and 38.4% in the control group). Proportions were 
similar between groups, and t-tests showed no 
significant differences in controlled variables such as 
itching, pain, burning, heat, metallic taste, fatigue, 
and dizziness. These results indicate the absence of 
significant differences between the two groups 
regarding neuromodulation sensations in our design 
using capsaicin. 
 

Discussion 
 
The study aimed to test the efficacy of DLPFC tDCS 
for treating tobacco consumption and craving during 
the intervention and after a 1-month follow-up. The 
findings revealed a significant reduction in  
self-reported daily tobacco consumption in the 
experimental group compared to the sham control 
group during the tDCS intervention, which consisted 
of 10 repeated sessions over 2 weeks at 20 min 
each and 2 mA. While the sham group also reduced 
their consumption, thus probing a certain placebo 
effect in the mechanism of the technique, the active 
tDCS group experienced a significantly greater 
reduction. However, this positive outcome was not 
sustained over time, as both groups experienced 
some rebound in smoking after a month. However, 

note that such rebound was not the same for both 
groups, since the experimental group recovered 
their addiction, but they did not do so at the baseline 
level, while the placebo group did return to their 
initial level of tobacco consumption. On the other 
hand, and regarding the craving experimented 
during the neuromodulation, we found it 
progressively decreasing along the 2 weeks of 
intervention only for the active tDCS group. When 
comparing the results to similar studies with 
multisession protocols, there were both similarities 
and differences. For instance, in the study of 
Verveer et al. (2020), participants received six tDCS 
sessions in 1 week (twice a day), and found the 
number of smoked cigarettes a day progressively 
decreased up to 1 week after the last tDCS session, 
though in both sham and active conditions and with 
no additional benefits for the active tDCS for the 
consumption neither for craving. Other studies, such 
as Hajloo et al. (2019), reported positive results for 
both cigarette consumption and craving, even after a 
month, with a protocol involving 10 sessions over  
5 weeks. On the other hand, Mondino et al. (2018) 
applied 10 sessions on 5 consecutive days (twice a 
day) and found active tDCS significantly reduced 
craving but with no differences with sham tDCS in 
the number of smoked cigarettes during the 
intervention or after a month. Maybe a decisive 
factor is, apart from the number of sessions, the 
timing at which the sessions are delivered. It 
appears from the published studies the efficacy 
might be greater when the sessions are more 
spread over time. For instance, Ghorbani Behnam et 
al. (2019) applied 20 sessions over 4 or 12 weeks 
and found that the longer duration led to the highest 
abstinence rate (25.7%) at 6 months. Overall, the 
findings suggest the need for a minimum of 10 
sessions, spaced out over time, to achieve stable 
benefits. Our study's design included 2 weeks of 
stimulation, but measured tobacco consumption 
during the 2nd week, with the intention of 
accumulating some neuromodulation prior to the 
assessment of the result. Anyway, it seems that 10 
sessions may not have been sufficient for lasting 
effects, in line with the findings of Mondino et al. 
(2018) and Verveer et al. (2020). Longer duration 
protocols, such as Ghorbani Behnam et al. (2019), 
may lead to more sustained benefits even after  
6 months. This raise the interesting possibility that 
aside from the potential biological effects of the 
tDCS, the psychological factors associated with an 
intervention which is sustained over many weeks 
might be critical to disrupt the addiction-sustaining 
habits. 
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The study also aimed to assess the influence of 
certain variables on the outcome of the tDCS 
intervention. Apart from the intervention itself, the 
number of cigarettes smoked per day was the best 
predictor of success both during intervention and in 
maintaining abstinence after a month. This suggests 
that the tDCS technique may be more effective for 
light smokers (around 10 cigarettes per day). 
Interestingly, motivation to quit smoking was also an 
important predictor of success during intervention, 
supporting the findings of Vitor de Souza Brangioni 
et al. (2018), who observed that tDCS coupled with 
high motivation significantly reduced cigarette 
consumption up to 4 weeks postintervention. 
Similarly, Fecteau et al. (2014) found benefits from 
five tDCS sessions in participants who wanted to 
quit smoking, and Verveer et al. (2020) suggested 
that the lack of positive results in their study might 
be partly due to participants' low motivation to quit 
smoking. Motivation appears to be a critical factor for 
immediate success in reducing or quitting smoking. 
As we commented in the introduction, 
neurostimulation can have state-dependent effects, 
thus pointing to a “motivated DLPF cortex” more 
prone to control addictive behavior. However, in this 
study, motivation did not influence the outcome after 
a month. Instead, age emerged as a significant 
predictor for maintaining abstinence, with older 
participants showing better restraint in consumption 
after a month (note that the study included 
participants up to around 60 years old). Factors such 
as years of smoking, physical dependence, and 
perceived self-efficacy to quit smoking were not 
strong predictors of outcome, at least as measured 
in this study. 
 
Participants in the study reported no significant side 
effects from tDCS, and no one withdrew due to 
discomfort during intervention. The most common 
sensations related to tDCS were mild burning, 
itching, and heat under the electrode, consistent with 
previous research. A systematic review by 
Matsumoto and Ugawa (2017) confirmed that the 
most common side effects from tDCS are mild  
skin-related issues that dissipate after electrode 
removal. The placebo strategy used in the study 
(using physiological saline solution with a small 
amount of capsaicin 0.75 mg/g cream) proved 
effective, as there were no significant differences in 
sensations between the active and sham groups. 
This strategy helped ensure that the participants’ 
experiences during the study were similar regardless 
of the intervention group. 
 
The study’s results should be interpreted cautiously 
due to the small sample size and the fact that there 

were no objective measures such as expired CO2, 
although, on the other hand, efforts were made to 
maintain homogeneity and a well-designed 
experiment. Several indicators were used to assess 
the therapeutic effects of tDCS as a smoking 
cessation treatment, such as self-recording, craving, 
and motivation to quit smoking. A follow-up measure 
was also included to evaluate the evolution of tDCS 
effects. The study’s results partially align with 
previous research on tDCS for nicotine dependence, 
which found improvements in tobacco consumption 
habits following tDCS neuromodulation of DLPFC, 
especially when a minimum of 10 sessions is 
applied, preferably spread over time. This may be 
due to the modulation of cognitive control circuits 
involved in decision-making, self-control, and 
craving regulation, which promote executive function 
and enhance control over impulsive behaviors 
motivated by nicotine reward (Kang et al., 2019). In 
conclusion, tDCS targeting the DLPFC (anode F4 
and cathode F3) at 2 mA for 10 sessions over  
2 weeks significantly reduces self-reported tobacco 
consumption and craving. However, the effects are 
not stable, suggesting that extending the tDCS 
protocol beyond 10 sessions could enhance  
long-term outcomes. 
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Abstract  
Substance use disorder (SUD) and alcohol use disorder (AUD) persist as a significant concern in the United 
States despite increasing treatment options. Effective interventions to reduce cravings and prevent relapse are 
still sought after. During the pandemic, drinking behaviors and cravings exacerbated among individuals with AUD. 
Neurofeedback shows documented promise in addressing AUD, yet studies often lack comprehensive data on 
craving. In this quantitative study, participants with AUD received 12 neurofeedback sessions using the Peniston 
protocol as inspiration for session designs. Four research questions guided the study, examining pre–post 
qEEGs; pre, post, and follow-up AUDIT scores; and neurofeedback sessions data. The study also tracked 
changes in self-reported craving levels over time. Hypotheses predict improvement in post-qEEGs, posttreatment 
craving scores, and neurofeedback session averages following each neurofeedback session. The discussion will 
focus on the implications for neurofeedback for AUD, cravings, and single-case research designs.  
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Alcohol use disorder (AUD) presents a significant 
and pervasive challenge in the United States 
(Edwards et al., 2015). Defined in the Diagnostic 
and Statistical Manual of Mental Disorders (5th ed.; 
DSM-5) as “a problematic pattern of alcohol use 
leading to clinically significant impairment or 
distress” (American Psychiatric Association [APA], 
2013, p. 490), it stands as a valid target for 
intervention (Dehghani-Arani et al., 2013). 
Recognizing the importance of addressing 
ambivalence towards sobriety, the added criteria of 
“craving” in the DSM-5 underscores its significance. 
Additionally, Schlauch et al. (2019) strongly 
encourages researchers to measure craving over 
time versus pre–post measurements.  
 
Many treatment options exist for those with AUD; 
however, an alternative modality is the brain-based 

intervention known as neurofeedback or  
EEG-biofeedback (Demos, 2019). Neurofeedback 
has emerged as a promising approach in addressing 
addiction symptoms (Dehghani-Arani et al., 2013; 
Dousset et al., 2020; Shepard, 2015; Sokhadze et 
al., 2008) with recent calls for more robust studies 
that may include refined or innovative methodologies 
to further understand its efficacy (Omejc et al., 
2019). Thus, this paper entails quantitative 
electroencephalogram (qEEG) data while also 
demonstrating innovative methodologies and 
analyses of neurofeedback session-to-session data 
and craving data, which will ideally inform clinicians 
with valuable insights and present future research 
options. Further, the methodical approach of single-
case research designs (SCRDs) using 
neurofeedback data for SUD/AUD may offer insights 
into session-to-session brain wave patterns over 
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time, along with measured self-report craving 
desires. 
 

Methods 
 
La Vaque et al. (2002) acknowledge the importance 
of adhering to best practices in neurofeedback 
methodologies and studies. For this study, the 
recommendation of interest is encouraging 
researchers to incorporate multiple observations (La 
Vaque et al., 2002). Integrating multiple 
observations into research studies encompasses 
various methodologies, including SCRDs, which are 
also referred to as time series designs and allow 
participants to serve as their baseline (Kazdin, 
2021). Key characteristics of SCRDs include  
(a) repeated dependent variable measures;  
(b) measurement across time; and (c) designation of 
the “case” as an individual, organization, or other 
type of group (Kazdin, 2021; Lobo et al., 2017). 
Researchers employing SCRD can also use multiple 
baselines (where participants start the intervention 
at different times), reversal designs, and multiple 
treatment designs based on their desired data 
results and research objectives. For instance, the A 
phase serves as the baseline with repeated 
measures but no intervention, while the B phase 
incorporates the intervention with the same repeated 
measurements as the A phase. The fundamental 
aim is to evaluate whether an intervention has any 
effect on the independent variable. 
 
Given that variations of SCRDs offer diverse 
strengths for assessing intervention effects, the 
literature underscores the importance of researchers 
exercising caution when analyzing their data. A 
similar mindset may also prove beneficial for 
neurofeedback researchers and clinicians, given the 
significant disparities and complexities in subjects’ 
individual life experiences, physiological 
development, and underlying brain patterns. Hence, 
the present study’s research questions include the 
SCRD-based questions and additional questions 
comparing participants’ pre- and post-qEEG data, 
and their pre–post and follow-up data using the 
Alcohol Use Disorders Identification Test (AUDIT; 
Saunders et al., 1993). The research questions 
guiding this study were as follows:  
 

1. Is there a change in a participant’s z-scores 
from pre- to postneurofeedback intervention 
of normative database comparison qEEG 
data?  

2. Is there a change over time during the 
neurofeedback treatment sessions in 
participants’ alcohol craving thoughts as 

measured by the Craving Desire scale 
(CDS; Ciraulo et al., 2013)? 

3. Is there a change over time in 
neurofeedback session-to-session data for 
participants’ mean magnitude of their 
respective brain wave frequencies in band 1, 
band 2, and band 3?  

4. Is there a change over time in participants’ 
alcohol use according to the pre, post, and 
follow-up scores of the AUDIT (Saunders et 
al., 1993)? 

 
Clinicians 
The present study engaged student clinicians, 
comprising master’s level students in clinical mental 
health from a nationally accredited program 
approved by the Council for Accreditation of 
Counseling and Related Education Programs 
(CACREP). These students had previously fulfilled 
the didactic coursework requirements for 
neurofeedback set by the Biofeedback Certification 
International Alliance (BCIA) and were supervised 
by a certified and licensed supervisor during data 
collection and the administration of neurofeedback 
sessions. Furthermore, volunteer clinicians with 
neurofeedback training, such as faculty or alumni, 
were also involved in the study. 
 
Measures  
Demographic Questionnaire. The demographic 
questionnaire included gender, age, ethnicity, family 
alcohol use, family drug alcohol use, and a current 
list of medications. Additionally, the form contained 
questions about the participant’s age of first alcohol 
use, any diagnosis of a mental health disorder, the 
state of their liver, and if they felt motivated for 
neurofeedback treatment.  
 
CDS. Researchers Kavanagh et al. (2013) suggest 
that although a researcher may ask a single 
question of “Are you craving right now?” for the 
repeated dependent variable, that internal 
consistency may improve with an assessment that 
includes more than a single question. Hence, the 
postneurofeedback session, self-report 
measurement for craving in this study was the CDS 
(Ciraulo et al., 2013). The CDS, developed by 
Ciraulo et al. (2013), consists of three items 
assessing the current desire for alcohol. These items 
are “I do want a drink right now,” “I crave a drink 
right now,” and “I have a desire for a drink right 
now.” Responses are rated on a 7-point Likert scale 
ranging from “very strongly agree” to “very strongly 
disagree.” Ciraulo et al. (2013) specifically designed 
the CDS for use in AUD studies and for repeated 
postintervention measurements. The CDS minimum 
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score is a 3 with the maximum being a 21. 
Participants were asked after every session to self-
report their craving level. All participants reported 
their CDS scores at 16 time points. Two were 
completed prior to neurofeedback treatment,  
12 were completed after every neurofeedback 
session, and the last two were collected around 1–3 
weeks poststudy. For the purpose of the study and 
exploring craving change, we computed the CDS 
scores into Phase A and Phase B.  
 
AUDIT: Self-Report Version. AUDIT (Saunders et 
al., 1993) serves as an assessment tool to gauge 
whether an individual's alcohol consumption poses 
harm. Developed by the World Health Organization 
through collaboration among six countries, the 
AUDIT aims to screen drinking behavior and related 
issues (Saunders et al., 1993). Comprising 10 items, 
the questionnaire utilizes a range of responses for 
items 1–8, spanning from 0 to 4 to indicate the 
frequency of alcohol consumption (0 = Never,  
1 = Monthly or less, 2 = Two to four times a month,  
3 = Two to three times a week, 4 = Four or more 
times a week). A sample question is "How often do 
you have a drink containing alcohol?" Questions 9 
and 10 employ a 3-point Likert scale (1 = No,  
2 = Yes, but not in the last year, 3 = Yes, during the 
last year), with an example item being “Have you or 
someone else been injured as a result of your 
drinking?” The questionnaire’s structure allocates 
items 1–3 for assessing alcohol consumption, items 
4–6 for alcohol dependence, and items 7–10 for  
alcohol-related issues. A score of 8 or more for 
males (7 or more for females) indicates harmful 
alcohol use (Saunders et al., 1993), while a score of 
20 or more suggests alcohol dependence. The 
maximum score achievable on the questionnaire is 
40 (Saunders et al., 1993). Internal consistency of 
the AUDIT, as demonstrated among 1,888 
individuals, yielded mean values of 0.93 for drinking 
behavior and 0.81 for adverse psychological 
reactions (Saunders et al., 1993). Validity was 
assessed through comparison with known alcohol 
users and nondrinkers. Among alcohol users,  
99% scored 8 or higher, with 98% scoring 10 or 
more. Conversely, only three nondrinkers (0.5%) 
scored 8 or more. 
 
Instrumentation 
Quantitative Electroencephalography. Before 
commencing neurofeedback treatment, a qEEG was 
conducted to analyze an individual’s baseline 
brainwave patterns and pinpoint areas for potential 
improvement through conditioning. It was 
recommended that clients refrain from consuming 
nonessential substances for at least 24 hr prior to 

the qEEG recording, unless instructed otherwise by 
a medical professional. Any medically prescribed 
substances were taken into consideration during the 
interpretation of the qEEG results. Medications were 
also considered for the development of treatment 
protocols as well as the Peniston protocol and the 
Scott-Kaiser modification (Dousset et al., 2020; 
Peniston & Kulkosky, 1989, 1990; Scott & Kaiser, 
1998).  
 
The 19-channel qEEG recordings were obtained 
using one of two systems: (a) the BrainMaster 
Discovery 24 high-impedance amplifier with 
NeuroGuide software (BrainMaster Technologies, 
Inc., Bedford, OH) or (b) the Mitsar BT 201 high-
impedance amplifier with WinEEG software (Mitsar 
Co. Ltd., St. Petersburg, Russia). Recordings were 
conducted in both eyes-closed and eyes-open 
conditions, utilizing appropriately sized Electro-Caps 
(Electro-Cap International, Inc., Eaton, OH) fitted 
according to manufacturer guidelines, along with 
ear-clip leads. Electrode preparation procedures 
were carried out to ensure impedance levels 
remained at or below 5K ohms (Jones, 2015). 
 
Neurofeedback. During the neurofeedback 
sessions, clinicians employed the BrainMaster 
Atlantis two-channel amplifiers (BrainMaster 
Technologies, Inc., Bedford, OH) along with 
BioExplorer software (Cyberevolution, Inc., Seattle, 
WA). Electrode site preparation involved cleaning 
the site, ground, and reference locations with 
rubbing alcohol and gently abrading them using PDI 
sterile alcohol prep pads and Nuprep skin prep gel. 
Gold-plated electrodes were then affixed to the 
clients using 10-20 conductive paste. Impedance 
measurements were carefully taken to ensure that 
interelectrode impedance remained below 5K ohms 
(Jones, 2015). 
 
Participants  
The specific characteristics and inclusion criteria 
encompassed individuals diagnosed with AUD who 
were aged 18 years or older. Exclusion criteria 
comprised active psychosis, current intoxication, 
advanced liver cirrhosis, and failure to meet the 
inclusion criteria. Participants were not restricted 
based on race, gender, ethnicity, or any other 
demographic variable. Prior to participant 
recruitment, the study obtained approval from the 
Institutional Review Board. Recruitment of 
participants involved reaching out to local 
counselors working with AUD clients, as well as 
outpatient facilities, through the distribution of flyers 
and emails. Additionally, social media platforms 
were utilized for recruitment purposes. Upon 
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expressing interest and contacting the Principal 
Investigator, potential participants received an email 
containing detailed study information and the 
Informed Consent document. All neurofeedback 
services were provided to participants free of 
charge, and they also received a nominal payment 
for their participation. 
 
Data Analysis 
For the pre–post qEEG data, we first  
de-identified participant data. Utilizing WinEEG, 
initial qEEG data underwent frequency domain 
analysis utilizing the fast fourier transform (FFT) 
technique as per Beauchamp (1973) and Congedo 
and Lubar (2003). WinEEG software facilitated this 
analysis by computing FFT and subsequently 
determining absolute power, relative power, and 
mean frequency for each electrode placement on 
the scalp (Congedo & Lubar, 2003). Next, using 
NeuroGuide software, participant data is compared 
with that of healthy individuals from the Lifespan 
Normative database, enabling clinicians to identify 
deviations from the norm which are typically 
expressed in z-scores. We also used NeuroGuide 
for artifacting all participants’ qEEG data for EC and 
EO conditions. The common qEEG montage of  
LE = linked ears and AVE = average reference was 
applied. Data reports consist of AVE absolute power 
z-scores. 
 
AUDIT scores consisted of collecting pre (around the 
initial qEEG), post (during the post qEEG), and 
follow-up (Qualtrics) measurements for each 
participant. Simple change score computations were 
calculated using Statistical Package for the Social 
Sciences (SPSS) software version 26 (SPSS, 2019). 
The AUDIT scores function as the participants’ self-
report data. Self-report data is highly suggested by 
Wigton and Krigbaum (2015) to collect and compare 
with physiological data. The AUDIT pre, post, and 
follow-up data for all participants is reported in a 
single chart.  
 
For the SCRD analyses, we initially inputted data 
into Excel to generate graphical representations 
depicting the participants’ data alongside resulting 
trend lines. Subsequently, our analysis utilized the 
nonoverlap of all pairs (NAP) method pioneered by 
Parker and Vannest (2009). Unlike methods reliant 
on trend lines or averages, NAP is commonly 
employed in SCRD and favored in AB Phase 
designs. While some researchers have criticized 
NAP analysis for its perceived inability to distinguish 
between phases (Manolov & Solanas, 2018), it is 
pertinent to note that in neurofeedback sessions, 
participants continuously receive the intervention 

rather than distinct treatment and no-treatment 
phases. NAP scores are derived by comparing all 
data points across the two phases (Fielenbach et al., 
2019). In our study, Phase A encompasses the initial 
defined group of neurofeedback sessions, while 
Phase B comprises the final or successive defined 
group of sessions. The resulting NAP scores yield 
effect sizes categorized as follows: 0.00–0.65 
indicating a weak effect, 0.66–0.92 suggesting a 
medium effect, and 0.93–1.0 denoting a large effect 
(Parker & Vannest, 2009). 
 
To enhance the robustness of the NAP findings, we 
employed simulation modeling analysis (SMA), a 
software program provided by Clinical Research 
Solutions (2021), which is freely downloadable and 
designed for SCRD involving fewer than 30 time 
points (Borckardt, 2006). This software enables the 
control of autocorrelation, assessment of session 
data slopes and trend lines, and conducts a  
5,000-simulation test to identify the most fitting trend 
line or the most correlated model. The analysis 
offers five distinct models: (a) Model 1 proposes an 
increase in outcome measure during Phase A 
followed by a decrease in Phase B; (b) Model 2 
suggests a stable Phase A followed by an increase 
in Phase B; (c) Model 3 indicates an increase in 
Phase A followed by stabilization during Phase B; 
(d) Model 4 proposes a continuous increase from 
Phase A into Phase B; and (e) Model 5 reveals an 
increase in Phase A, an immediate decrease, and a 
subsequent increase in Phase B. 
 
SMA provided valuable insights into participants’ 
neurofeedback session data, allowing for the 
prediction of subtle changes within the data and 
offering potential trajectories of participant response 
had the intervention been continued by clinicians. 
 
Participant 1 
Participant 1 (P1) reported having family members 
with drug and alcohol issues. P1 also stated he 
began drinking at age 15, identified as a Caucasian 
male, and when he began the study was 55 years 
old. P1 was taking doctor-prescribed medication for 
blood pressure, and an anti-depressant, an 
Antabuse (i.e., a medication that causes adverse 
effects with alcohol consumption). P1 reported he 
was motivated for neurofeedback treatment. 
Clinicians conducting neurofeedback sessions 
informed us of P1’s elevated anxiety states during 
his first few sessions.  
 
QEEG Findings. Analyzing P1’s initial and final 
scores (Table 1), it is evident that there was a 
decrease in theta activity (4–8 Hz) across both EC 
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and EO conditions. Moreover, there was a 
significant reduction in higher beta activity, 
particularly notable in the EC condition. Additionally, 
in other channels observing EC beta activity (such 
as Fz, Cz, F3, and P3), initial pre z-scores mostly 
ranged from z ≥ 2.00. Following the intervention, 
post scores for these channels exhibited a 
consistent trend toward the mean with z ≥ 1.00. P1’s 
individual protocol included downtraining 4–8 Hz, 
increasing 8–10 Hz, and downtraining 20–25 Hz at 
Pz with EC.  
 
CDS. P1's mean values across different phases 
were as follows: Phase A (M = 10.6), Phase B (M = 
7.6), and overall (M = 9.2). P1's test for level change 
yielded R = −0.43, p = .20; while the test for slope 
change showed R = −0.27, p = .44, indicating a 
decreasing slope vector during both Phase A and 
Phase B (Figure 1). To further examine the change 
in trend, we utilized the simple moving average 
(SMA) descriptive output for ordinary least squares 

(OLS), revealing an OLS Slope of m = −0.45,  
b = 13.03, 95% CI [7.88, 11.13]. Subsequently, we 
employed the SMA function of bootstrapped 
autocorrelation for OLS using the residuals of the 
fitted model, resulting in N = 16, lag-1 = −0.12,  
p = .42. Additionally, for Phase A, the values were n 
= 8, lag-1 = −0.48, p = .09; and for Phase B, n = 8, 
lag-1 = 0.003, p = .30. Results displayed in Figure 1. 
 
 
Table 1 
Pre/Post qEEG Z-Score Data for P1 

 EC Pre EC Post EO Pre EO Post 

4–8 Hz 0.89 0.09 0.75 0.17 

8–10 Hz 0.57 −0.45 0.15 −0.31 

20–25 Hz 4.41 1.54 4.81 2.06 
Note. EC = eyes closed; EO = eyes open. 

 
 

Figure 1. P1’s CDS Visual Data From Clinical Research Solutions, 2021. 

 
 
 
Neurofeedback Session Data. Upon reviewing the 
visual representation of P1’s data (Figure 2), it 
becomes apparent that the trend lines for both the 
8–10 Hz and 20–25 Hz bands are moving in the 
opposite direction to the desired outcome. However, 
there is a slight decrease observed in the 4–8 Hz 
band, suggesting a potential trend toward achieving 
the protocol goal. This graphical representation 

serves as the SCRD visual analysis.  
12 neurofeedback sessions were categorized into 
Phase A (n = 6) and Phase B (n = 6) for the analysis 
of NAP scores. These scores are instrumental in 
determining the effect size. P1's visual for 
neurofeedback data are in Figure 2 and the NAP 
results are detailed in Table 2.  
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Figure 2. P1’s Visual of Neurofeedback Data. 

 
 
 
According to his NAP scores, P1’s data did not 
reveal any medium or large effects. Additionally, we 
used the SMA to further examine any unseen or 
minute changes. In P1’s 4–8 Hz band, the SMA 
models indicated no significant change, with all 
partial correlations falling within the weak range (i.e., 
0.1 to 0.3). Conversely, the 8–10 Hz band exhibited 

the most favorable fit with Model 1 (R = −0.65,  
p = .04), signifying a decrease in the outcome 
measure during Phase A followed by an increase in 
Phase B, aligning well with the established protocol. 
Similarly, the change effects observed in P1’s 20–25 
Hz band were best represented by Model 1  
(R = −0.6, p = .03). 

 
 
Table 2 
Nonoverlap of All Pairs Statistical Outcomes for P1 

 S Pairs NAP VARs z p 90% CI 

4–8 Hz −2 36 0.472 156 −0.16 .873 [−0.626, 0.515] 

8–10 Hz −12 36 0.333 156 −0.96 .337 [−0.904, 0.237] 

20–25 Hz −8 36 0.389 156 −0.64 .522 [−0.793, 0.349] 
Note. S = distribution; Pairs = total pairs comparisons; NAP = nonoverlap of all pairs effect sizes; VARs = variance;  
z = z-score; p = p-value (p = .05); CI = confidence interval. 
 
 
Participant 2 
Participant 2 (P2) self-identified as a 28-year-old 
Latino male in his Qualtrics demographic form. He 
indicated that someone in his family struggled with 
alcohol and drug abuse. P2 disclosed that his own 
struggle with alcohol began in 2014 at the age of 21. 
He reported not taking any medications and denied 
being diagnosed with a mental health disorder. His 
highest level of education was a college degree, and 
he expressed satisfaction with his level of social 

support. P2 expressed motivation for AUD 
treatment. Clinicians noted his exceptional 
commitment to neurofeedback sessions and 
punctuality in keeping his appointments. Throughout 
the neurofeedback interventions, P2 appeared 
externally content. Additionally, he was concurrently 
attending outpatient treatment, which ceased around 
his ninth neurofeedback session. 
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QEEG Findings. We artifacted data for both EC and 
EO conditions. Based on P2’s pre- and postscores 
(see Table 3), there was an increase in the 4–8 Hz 
band and the 18–25 Hz band, contrary to the 
intended inhibition and decrease settings for his 
protocol. However, there was an increase in the  
12–15 Hz band from pre to post in both EC and EO 
conditions. P2’s neurofeedback protocol was 
inhibiting 4–8 Hz, increasing 12–15 Hz, and 
downtraining 18–25 Hz at Cz with EO. 
 
 
Table 3 
Pre/Post qEEG Z-Score Data for P2 

 EC Pre EC Post EO Pre EO Post 

4–8 Hz 0.66 2.07 0.03 1.01 

12–15 Hz 0.96 1.64 0.57 1.20 

18–25 Hz 1.98 2.45 1.71 2.89 
Note. EC = eyes closed; EO = eyes open. 

CDS. The mean scores for P2’s phases (see  
Figure 3) were as follows: Phase A (M = 3.6) and 
Phase B (M = 3.1). The combined mean for both 
phases was (M = 3.4), which represents the 
equivalent of level change. Autocorrelation was 
programmed into all data points for both phases 
at .183 for lag-1. P2’s test for level change yielded  
R = −0.42, p = .17. The test for slope change 
resulted in (R = .09, p = .77). For the OLS analysis, 
the OLS Slope resulted in m = −0.04, b = 3.7, 95% 
CI [3.13, 3.69]. Additionally, the bootstrapped 
autocorrelation was utilized for OLS with the 
residuals of the fitted OLS model, yielding results of 
N = 16, lag-1 = .15, p = .19. Phase-specific results 
indicated autocorrelation for Phase A (n = 8, lag-1 
= .16, p = .17) and Phase B (n = 8, lag-1 = −.19,  
p = .35). Running the raw data and removing phase 
effects for the bootstrapped autocorrelation models 
revealed no significant effects. 
 

 
 

Figure 3. P2’s CDS Visual Data From Clinical Research Solutions, 2021. 

 
 
 
Neurofeedback Session Data. While not the 
primary focus of his protocol, P2's 4–8 Hz band 
exhibited an increase rather than the desired 
inhibition of the wave. However, the 8–15 Hz band 
showed an increase according to the visual trend 
line. Given the proximity of these bands and their 
shared use of the 8 Hz data, some of the observed 

increase in the 8–15 Hz band may be influencing the 
4–8 Hz data. This could potentially account for part 
of the increase in the 4–8 Hz band. Despite 
clinicians' emphasis on reducing the 18–25 Hz band, 
the trend line indicates the opposite effect. Figure 4 
provides a visual representation of this analysis.  
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Figure 4. P2’s Visual of Neurofeedback Data. 

 
 
 
To reiterate, NAP scores ranging from .00 to .65 
indicate a weak effect, .66 to .92 suggest a medium 
effect, and .93 to 1.0 signify a large effect. P2’s data 
exhibited medium NAP score effects across all three 
brain wave bands (see Table 4). However, none of 
the p scores were significant, although the 18–25 Hz 
band approached significance, albeit in the opposite 
trend desired (i.e., increasing instead of decreasing). 
Furthermore, we analyzed the data using SMA and 
assessed the fit of five models. P2’s 4–8 Hz band 
trend was best represented by Model 2, indicating a 
stable Phase A and an increase during Phase B  

(R = 0.56, p = .07). While P2’s 8–15 Hz band did not 
yield significant findings in the SMA models, it also 
aligned well with Model 2 (R = 0.46, p = .16), 
partially supporting his desired trend. Conversely, 
the change effects for P2’s 18–25 Hz band were 
best captured by Model 3 (R = 0.65, p = .03), 
demonstrating significance. Model 3 suggests an 
increase during Phase A followed by a stable or 
leveling-out Phase B, possibly indicating P2’s initial 
achievement of his protocol goal followed by 
maintenance of that goal. 

 
 
Table 4 
Nonoverlap of All Pairs Statistical Outcomes for P2 

 S Pairs NAP VARs z p 90% CI 

4–8 Hz 22 36 0.806 156 1.76 .078 [0.040, > 1] 

8–15 Hz 20 36 0.778 156 1.60 .109 [−0.015, > 1] 

18–25 Hz 24 36 0.833 156 1.92 .055 [0.096, > 1] 
Note. S = distribution; Pairs = total pairs comparisons; NAP = nonoverlap of all pairs effect sizes; VARs = variance; z = z-
score; p = p-value (p = .05); CI = confidence interval. 
 
 
Participant 3  
Participant 3 (P3) completed the demographic form 
indicating male gender, 57 years of age, and Latino 
ethnicity. He mentioned no familial history of alcohol 
or drug addiction. P3 recognized his initial  

alcohol-related issue at 17 years old. His current 
medication regimen included naltrexone, Seroquel, a 
blood pressure medication, and an antidepressant, 
prescribed for anxiety. His highest level of education 
is a master’s degree. P3 expressed contentment 
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with his social support network and exhibited 
readiness for AUD treatment. During interactions, P3 
displayed signs of anxiety through fidgeting, 
sweating, and body tension. Clinicians observed his 
restlessness during neurofeedback sessions, 
occasionally accompanied by yawning and 
drowsiness. Clinicians offered short breaks to this 
client. P3 took a 1-week hiatus from neurofeedback 
sessions due to a work-related commitment. 
 
QEEG Findings. For P3, we used manual artifacting 
for both EC and EO conditions due to participant 
movement and tension. The individualized 
neurofeedback protocol for P3 was downtraining  
4–10 Hz, increasing 12–15 Hz, and downtraining 
25–30 Hz at Fz with EO. P3’s outcomes revealed 
slight alterations in both the 4–10 Hz and 25–30 Hz 
bands (see Table 5). Notably, the latter exhibited a 
favorable shift towards the mean. In the 12–15 Hz 
band, there was a decrease during EC sessions but 
an increase during EO sessions. Consequently, the 
increase in the EO 12–15 Hz band was in 
accordance with the protocol and deemed beneficial. 
  
CDS. P3's phase (see Figure 5) means were 
calculated as follows: Phase A (M = 10.8) and 

Phase B (M = 6.1). The overall mean across all 
phases with a sample size of 16 was (M = 8.4). 
Utilizing the SMA and conducting tests for level 
change, P3's data yielded R = −0.65, p = .18. 
Additionally, the test for slope change resulted in  
R = 0.03, p = .95. In the ordinary least squares 
(OLS) analysis, the descriptive analysis function was 
employed to determine the OLS Slope, resulting in 
m = −0.99, b = 10.57, 95% CI [4.25, 7.86]. The OLS 
analysis indicated significant results for the entire 
sample (N = 16, lag-1 = .43, p = .02), as well as for 
Phase A (n = 8, lag-1 = .47, p = .01), but not for 
Phase B (n = 8, lag-1 = −.23, p = .38). 
 
 
Table 5  
Pre/Post qEEG Z-Score Data for P3 

 EC Pre EC Post EO Pre EO Post 

4–10 Hz 0.28 0.79 −0.22 0.61 

12–15 Hz 2.00 1.00 0.08 1.38 

25–30 Hz −0.58 −0.29 −0.63 −0.10 
Note. EC = eyes closed; EO = eyes open. 

 
 

Figure 5. P3’s CDS Visual Data From Clinical Research Solutions, 2021. 
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Neurofeedback Session Data. Following P3's 
protocol, the visual representation (see Figure 6) of 
his training bands (12–15 Hz and 25–30 Hz) 
suggests a slight positive trend in the desired 
direction. However, the 4–10 Hz band does not 
exhibit a visual trend in the desired direction. It's 
plausible that artifacts, such as altered data due to 
P3's movements during sessions, could influence his 

data, particularly in the higher band range or alter 
the 25–30 Hz band. Nonetheless, there is a visual 
decrease in his 25–30 Hz band, aligning with 
protocol objectives. To delve deeper into the 
analysis, we utilized the NAP scores derived from 
P3’s resulting brain bands. The NAP scores, 
presented in Table 6 are utilized to determine effect 
size. 

 
 

Figure 6. P3’s Visual of Neurofeedback Data. 

 
 
 
Based on the NAP scores, all of P3’s brain wave 
bands exhibited a medium effect. Notably, the 12–15 
Hz band showed a significant change in the desired 
direction for his personalized protocol, approaching 
a large effect size. Further analysis involved 
examining P3’s brain wave bands using the SMA. 
For the 4–10 Hz band, Model 4 yielded the best fit 
(R = 0.66, p = .07), indicating a progressive increase 
throughout both Phase A and Phase B, aligning with 

the observed trend. P3’s 12–15 Hz band 
demonstrated optimal fit with Model 2 (R = 0.74,  
p = .02), depicting stability during Phase A followed 
by an increase during Phase B, in accordance with 
his protocol. Lastly, P3’s 25–30 Hz band aligned 
most closely with Model 5 (R = −0.52, p = .09), 
illustrating a decrease during Phase A, followed by 
an immediate increase and subsequent decrease 
during Phase B. 

 
 
Table 6  
Nonoverlap of All Pairs Statistical Outcomes for P3 

 S Pairs NAP VARs z p 90% CI 

4–8 Hz 20 36 0.778 156 1.60 .109 [−0.015, > 1] 

12–15 Hz 28 36 0.889 156 2.24 .025 [0.207, > 1] 

25–30 Hz 10 36 0.639 156 0.80 .423 [−0.293, > 1] 
Note. S = distribution; Pairs = total pairs comparisons; NAP = nonoverlap of all pairs effect sizes; VARs = variance; z = z-
score; p = p-value (p = .05); CI = confidence interval. 
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Participant 4  
Participant 4 (P4) completed the demographic form, 
identifying herself as female, 59 years old, and of 
white ethnicity. P4 disclosed a family history of 
alcohol abuse but not drug abuse, with her first 
experience of alcohol abuse dating back to the age 
of 8. She reported being prescribed medication for 
thyroid gland issues, panic attacks and/or sleep 
(benzodiazepine), blood pressure, heartburn, and 
anti-nausea. Additionally, P4 acknowledged a 
diagnosis of anxiety and held a degree in accounting 
as her highest level of education. P4 expressed 
feeling “very satisfied” with her social support and 
exhibited motivation for AUD treatment. Clinicians 
noted P4's mild anxiety during most sessions, along 
with her perception that time passed quickly at the 
end of each neurofeedback session. Despite this, P4 
generally maintained a content demeanor and 
consistently attended all scheduled sessions, 
displaying dedication according to clinicians’ 
observations. 
 
QEEG Findings. Manual artifacting was used for 
P4’s EC pre data due to muscle tension with the 
remaining data being ran through automatic 
artifacting. Her protocol involved inhibiting 4–7 Hz, 
increasing 9–11 Hz, and inhibiting 25–30 Hz, 
specifically at the Oz site. However, P4’s data 
presented an additional challenge as the 
neurofeedback program did not encompass training 
at the Oz site. Given that Oz is situated between O1 
and O2, an additional step was necessary to 
incorporate data from both sites. This involved 
combining and averaging the data from O1 and O2 
locations. In P4’s 4–7 Hz band, there was a slight 
increase rather than the desired inhibition. Both her 
EC and EO data in the 9–11 Hz band showed a 
minor increase, consistent with her protocol. 
However, in the 25–30 Hz band, P4’s data showed 
an approximate 1 standard deviation increase during 
EC, contrary to her protocol. Conversely, during EO, 
her 25–30 Hz band decreased by approximately 2 
standard deviations, aligning with her protocol (see 
Table 7). 
 
 
Table 7 
Pre/Post qEEG Z-Score Data for P4 

 EC Pre EC Post EO Pre EO Post 

4–7 Hz 1.09 1.51 0.01 0.68 

9–11 Hz 0.16 0.18 0.18 0.49 

25–30 Hz 0.95 2.40 4.38 2.29 
Note. EC = eyes closed; EO = eyes open. 

CDS. Like with every participant, neurofeedback 
clinicians prompted P4 to evaluate her current 
craving level. P4 consistently expressed how her 
recent outpatient program and neurofeedback had 
greatly reduced her craving thoughts. In each of the 
16 data points, P4 consistently rated her cravings at 
the lowest level of 3. Consequently, we opted not to 
analyze her CDS data, as it would simply show a flat 
line graphically. 
 
Neurofeedback Session Data. The visual trend 
lines (see Figure 7) for all P4’s data pose challenges 
for visual analysis. To restate, P4’s protocol involved 
inhibiting brainwave bands within the range of 25–30 
Hz and 4–7 Hz. P4’s bands being inhibited is 
somewhat reflected in the visual charts. Ideally, P4’s 
9–11 Hz band should show an increase over time, 
but the trend in the visual data is unclear. 
 
None of P4’s NAP scores (see Table 8) revealed a 
notable effect or significant change. P4’s 4-7Hz 
band exhibited the strongest fit with Model 3  
(R = −0.36, p = .17), albeit the correlation was weak. 
Similarly, P4’s 9–11 Hz band, also displaying a weak 
correlation, demonstrated the closest fit with Model 1 
(R = −0.31, p = .27), indicating a decrease in Phase 
A followed by an increase in Phase B. While this 
change is minor, the upturn in Phase B corresponds 
with the desired trend for P4’s protocol. Conversely, 
the 25–30 Hz band did not exhibit a significant effect 
or change, aligning most closely with Model 1  
(R = −0.32, p = .19). 
 
Participant 5 
The fifth participant (P5) identified as a 54-year-old 
male of white ethnicity. P5 noted that no one in his 
family had struggled with alcohol or drug abuse. He 
disclosed beginning alcohol use at the age of 15 and 
currently takes medications for blood pressure, 
cholesterol, blood thinning, depression, and 
naltrexone. While P5 hasn't received a formal 
diagnosis for a mental health disorder, he expressed 
grappling with feelings of depression and anxiety. 
Despite accumulating university credits, P5 did not 
complete his degree. He indicated feeling “satisfied” 
with his current level of social support. P5 
demonstrated charisma and enthusiasm for 
neurofeedback sessions. However, due to his local 
job commitments, he faced challenges attending 
certain session times, leading to fluctuations in 
mood influenced by work stress. Additionally, P5 
recently completed an outpatient program. 
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Figure 7. P4’s Visual of Neurofeedback Data. 

 
 
 
Table 8 
Nonoverlap of All Pairs Statistical Outcomes for P4 

 S Pairs NAP VARs z p 90% CI 

4–7 Hz −9 36 0.375 156 −0.72 .471 [−0.821, 0.321] 

9–11 Hz 1 36 0.514 156 0.08 .936 [−0.543, 0.599] 

25–30 Hz 3 36 0.542 156 0.81 .810 [−0.487, 0.654] 
Note. S = distribution; Pairs = total pairs comparisons; NAP = nonoverlap of all pairs effect sizes; VARs = variance; z = z-
score; p = p-value (p = .05); CI = confidence interval. 
 
 
QEEG Findings. We employed automatic artifacting 
for all P5’s qEEG data, except for his post-EO data 
(see Table 9). Due to muscle tension issues, we 
opted for manual artifacting in this instance. P5’s 
personalized neurofeedback protocol involved EO 
with the site location set at Cz, targeting the 
decrease of 4–10 Hz, increase of 12–15 Hz, and 
decrease of 20–30 Hz. Below are P5’s z-scores. 
Reviewing P5’s qEEG data, it appears he managed 
to marginally reduce his 4–10 Hz band during both 
EO and EC conditions, as well as his EC 20–30 Hz 
band. However, there was no significant change 
observed in his 12–15 Hz band. Notably, P5’s pre- 
and post-qEEG data exhibited z-scores that did not 
raise any concerns and remained consistent with the 
norm. 
 

CDS. P5’s averages indicate Phase A (M = 6.13) 
and Phase B (M = 3), with a total mean of (M = 4.56) 
across all 16 sessions, reflecting changes in levels 
(see Figure 8). Furthermore, P5’s test for level 
change yielded R = −0.72, p = .07, while the test for 
slope change resulted in R = −0.42, p = .35. 
Descriptive statistics for P5’s data using OLS 
showed a slope of m = -0.39 and an intercept of b = 
7.9, with a 95% confidence interval of [3.56, 5.69]. 
Bootstrapped autocorrelation for OLS utilizing the 
residuals revealed N = 16 with lag-1 = .17, p = .16. 
Phase results with the OLS residuals indicated a 
significant lag-1 of −0.71, p = .01 for Phase A (n = 8) 
and lag-1 of .00, p = .0001 for Phase B (n = 8). 
Thus, the overall OLS line showed no significance, 
both phase levels displayed a significant change. 
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Table 9 
Pre/Post qEEG Z-Score Data for P5 

 EC Pre EC Post EO Pre EO Post 

4–10 Hz 0.72 0.23 0.22 −0.005 

12–15 Hz 0.07 −0.08 0.07 0.06 

20–30 Hz 0.28 −0.10 0.09 0.82 
Note. EC = eyes closed; EO = eyes open. 
 

Neurofeedback Session Data. From a visual 
standpoint, P5’s data reveals coherent trend lines 
(see Figure 9). Following P5's protocol, the trend 
lines depicting the increase in 12–15 Hz and 
decrease in 20–30 Hz frequencies seem to show a 
positive trajectory. Throughout the sessions, P5 
exhibited occasional jaw tension and minor 
movements. Table 10 presents an analysis of his 
session data using NAP scores for further 
examination. 
 
 

 
Figure 8. P5’s CDS Visual Data from Clinical Research Solutions, 2021. 
 

 
 
 
P5's NAP scores for the 4–10 Hz and 20–30 Hz 
frequency bands showed weak or minimal effects, 
lacking significant values. Although the 12–15 Hz 
band displayed a medium NAP score aligning with 
the intended protocol trend, the associated p-value 
did not reach significance. Moving forward, we 
delved into analyzing P5’s neurofeedback session 
data using SMA modeling. Notably, the 4–10 Hz 
band demonstrated the strongest fit with SMA  
Model 3 (R = 0.57, p = .04), characterized by an 
increase in Phase A followed by stabilization in 
Phase B. Similarly, P5's 12–15 Hz band data 
showed the closest fit with Model 3 (R = 0.40,  

p = .06). Conversely, his 20-30Hz band data aligned 
with Model 4 (R = −0.32, p = .18), suggesting a 
preferred decrease throughout the sessions. 
 
AUDIT Results  
All participants’ AUDIT pre-post and follow-up data 
were composed into a single graph which is 
displayed below in Figure 10. Pre-time point data 
was collected during the participants’ qEEG session, 
post was collected following their final 
neurofeedback session, and follow-up was collected 
3–4 weeks after the neurofeedback sessions had 
concluded.  
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Figure 9. P5’s Visual of Neurofeedback Data. 

 
Table 10 
Nonoverlap of All Pairs Statistical Outcomes for P5 

 S Pairs NAP VARs z p 90% CI 

4–10 Hz 11 36 0.653 156 0.88 .379 [−0.265, 0.876] 

12–15 Hz 17 36 0.736 156 1.36 .174 [−0.099, > 1] 

20–30 Hz −8 36 0.389 156 −0.64 .522 [−0.793, 0.349] 
Note. S = distribution; Pairs = total pairs comparisons; NAP = nonoverlap of all pairs effect sizes; VARs = variance;  
z = z-score; p = p-value (p = .05); CI = confidence interval. 

 
Figure 10. Participants’ Self-Report AUDIT Scores (Pre, Post, Follow-Up). 
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Discussion 
 
The main objective of this study was to investigate 
the efficacy of neurofeedback in curbing cravings 
and enhancing self-regulation through a combination 
of self-report evaluations and physiological 
measurements. Comparing pre and post qEEG data 
across participants revealed diverse outcomes. P1 
experienced a desirable slight decrease in theta  
(4–8 Hz) activity and an undesirable decrease in 
alpha (8–10 Hz). However, P1 also exhibited a 
significant decrease in his beta (20–25 Hz) EC/EO 
conditions by 2 standard deviations. P2 achieved 
notable success in elevating his sensorimotor 
rhythm (SMR) by approximately 1 standard 
deviation. Similarly, P3 demonstrated effective 
results by enhancing their EO SMR by about  
1 standard deviation. P4 managed to marginally 
increase alpha (9–11 Hz) and decrease EO beta 
(25–30 Hz), aligning with their prescribed protocol. 
P5 succeeded in slightly reducing theta (4–10 Hz) 
and EC beta (20–30 Hz).  
 
Considering participants’ neurofeedback sessions, 
outcomes also exhibited a spectrum of variability. 
Each participant was administered tailored 
neurofeedback protocols. While certain individuals 
displayed subtle shifts aligning with intended 
objectives, others evidenced notable changes 
characterized by moderate to substantial protocol 
goals. Furthermore, certain participants evinced 
indications of prospective enhancement in 
neurophysiological regulation contingent upon 
sustained participation in neurofeedback sessions. 
For neurofeedback session data, we employed 
SCRD methodology which enabled us to scrutinize 
individual transformations over the course of 
neurofeedback treatment comprehensively. This 
approach facilitated a nuanced understanding of 
shifts by analyzing data points from diverse vantage 
views. For example, P5’s visual analysis exhibited 
promising trends, demonstrating alignment with his 
protocol. Notably, SMA revealed for his SMR (12–15 
Hz) band a best fit with Model 3 (R = 0.40, p = .06), 
suggesting a Phase A increase followed by a stable 
Phase B, consistent with the prescribed protocol and 
but potentially indicating a learning plateau. 
Furthermore, P5's 20–30 Hz band demonstrated a 
consistent decrease across sessions, aligning well 
with Model 4 (R = −0.32, p = .18). Without 
supplementary analyses or the application of SCRD, 
discerning these subtleties might have proven 
challenging. 
 

The CDS served as a pertinent instrument for self-
reported assessment of craving intensity. Three out 
of four participants conveyed a discernible 
attenuation in alcohol cravings, a phenomenon 
persisting beyond the cessation of neurofeedback 
session. Conversely, P1’s data indicated a marginal 
escalation in craving intensity during the concluding 
phase of the assessment. Subsequent scrutiny of 
pre, post, and follow-up evaluations employing the 
AUDIT unveiled that four out of five participants 
registered either diminished or static scores, 
indicative of a protracted reduction in overall alcohol 
consumption. Despite the diversity observed in 
participants' qEEG data and neurofeedback session 
outcomes, it was their self-reports of craving and 
alcohol use that yielded more illuminating insights. 
 
Limitations and Implications for Research 
The neurofeedback sessions took place in an 
academic environment rather than in a dedicated 
research facility. It is pertinent to note potential 
factors such as variations in session administration 
by students, including differences in threshold 
settings and varying levels of proficiency in 
neurofeedback techniques. While efforts were made 
to monitor sessions for electrode pops and other 
potential artifacts, it's important to acknowledge that 
session averages remained uncorrected for artifacts, 
which could potentially distort data. Additionally, 
many participants had either completed or had a few 
remaining outpatient addiction treatment sessions 
prior to their involvement in the current study. 
 
The utilization of SCRD in the context of 
neurofeedback session data constitutes a novel 
methodological approach, meriting the attention from 
future scholars. Researchers may find it 
advantageous to either emulate the format 
employed in this study or explore alternative SCRD 
methodologies and analytical techniques. A notable 
attribute of SCRD methodologies lies in their 
capacity to discern subtle fluctuations in participant 
data across temporal dimensions (Lenz, 2015), 
thereby furnishing neurofeedback practitioners with 
valuable insights into requisite protocol modifications 
or instances of reaching learning plateaus. This 
tailored examination of individual physiological 
responses to interventions holds considerable 
potential for enriching the efficacy of neurofeedback 
services, particularly for professionals within 
counseling or psychological domains who seek to 
ascertain meaningful indices of client progress. 
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Conclusion 
 
Our study explored neurofeedback for AUD using 
pre and post qEEGs, pre/post/follow-up AUDIT 
scores, and assessing craving desire over time. Five 
participants completed the study, with outcomes 
resulting in varied changes in their qEEG and 
neurofeedback session averages. We also utilized 
SCRD methods and analyses for recognizing 
individualized protocols and examining discrete 
complexities and trends in neurofeedback session 
averages. Repeated assessment of the CDS and 
AUDIT scores displayed promising results through 
self-reports of reduction in craving desire and 
alcohol use.  
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Abstract 
Exercise, diet, and meditation enhance physical wellness and psychological well-being, commonly boosting 
productivity. However, their specific effects remain limited. This study assessed these methods using cognitive 
changes, prefrontal cortex blood flow, brain connectivity, key blood parameters, and daily self-assessments of 46 
middle-aged Indo-Europeans (22 women) engaged in intermittent fasting, cardio-strength training, or daily 
meditation for 8 weeks. The meditation group showed significant improvement in executive function, with an 
increase in task-switching reaction time (255.22 ± 317.20 ms) and enhanced heart rate variability. There was a 
significant decrease in creatinine concentration (5.04 ± 0.89 g/dL) and an increase in zinc concentration. The diet 
group experienced a significant decrease in brain oxygenation (−2.48 ± 2.50 of TSI) and an increase in leptin 
levels (2.15 ± 0.04 g/dL). Over 60 min of daily physical activity correlated with quicker responses. All groups 
demonstrated improved attention compared to controls, with decreased inhibition latency (meditation: 12.97 ± 
41.99 ms, diet: 9.90 ± 49.07 ms, exercise: 16.38 ± 49.07 ms). Meditation and exercise groups showed reduced 
connectivity across six frequency bands. Serotonin levels dropped notably in the diet group (99.02 ± 7.04 g/dL). 
After 2 months, exercise and meditation showed greater benefits than diet or controls. 
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Introduction 
 
Work productivity significantly impacts quality of life 
and well-being. It is influenced by various factors 
including chronic diseases, depression, infectious 
diseases, and conditions such as chronic pain, 
chronic fatigue, and shift work (Okdeh et al., 2023; 
Picard & McEwen, 2014). However, the precise 
effect of daily habits on human performance and 
physiology remains incompletely understood 
(Harrington, 2001; Yetton et al., 2019). 
 
With increasing confidence, exercise, diet, and 
meditation are recognized as simple yet effective 
methods for enhancing well-being and achieving a 
healthy, productive life (Arya et al., 2018; Borchardt 
& Zoccola, 2018; Mattson et al., 2017; Reimers et 
al., 2018). However, there is still no overarching 
evidence demonstrating conclusively that these 
activities improve cognitive function or brain 
performance due to incomplete understanding of 
their underlying mechanisms (Chiesa et al., 2011; 
Kuczmarski et al., 2014; Northey et al., 2018). 
 
The measurable physiological markers of work 
productivity and performance remain difficult to find, 
though they are believed to be cunningly connected 
to cognitive functioning. Previous research indicates 
that cognitive complexity, stress, and uncertainty 
directly impact task performance and can indirectly 
influence overall productivity and occupational safety 
(Jahncke et al., 2011; Kikkawa et al., 2023; La Torre 
et al., 2019; Reganova et al., 2023; Woods & 
Dekker, 2000). Given the physiology of cognitive 
functions, neurotransmitters are considered potential 
candidates for estimating cognitive performance as 
they play critical roles in cognitive functioning 
(Garcia-Esparcia et al., 2018; Volk et al., 2015). 
However, it’s important to note that 
neurotransmitters produced in the neural system 
may not always be accurately reflected in blood 
serum or cerebrospinal fluid (CSF) levels, which may 
not fully represent neural status (Bak et al., 2006). 
 
On the other hand, numerous widely measured 
biochemical blood markers have been proven to be 
connected to the level of cognitive functioning 
(Jensen et al., 2015; Popiołek et al., 2020). 
Biochemistry blood test data used to be limited to 
clinical applications, but in the last decade, it has 
been routinely used in many professional settings as 
a physiological monitoring tool, for example, to 
define aging markers (Engelfriet et al., 2013). Such 
an approach provides relevant information including 
identification of inflammation processes, as well as 
the levels of macronutrients and vitamins, oxidative 

stress, and energy deficiency. Regular blood tests 
can be used to monitor personal efficacy or analyze 
the efficacy of various interventions, such as 
physical exercise, nutritional strategies, mental 
training, etc. One of the main challenges in using 
biomarker data is the wide interindividual variability. 
There is also a lack of longitudinal observations of 
biomarkers on certain populations. Therefore, 
external influences (e.g., seasonal) can also affect 
the data. With the help of the profiling and 
monitoring approach, biochemical blood marker 
measurement combined with contextual 
personalized data has the potential to improve the 
quality of life of the general population, enhance and 
partially test the application of 4P healthcare 
principles (i.e., predictive, preventive, personalized, 
participative) in daily life, and collect information for 
further fundamental and practical studies on human 
health and telemedicine. 
 
One potential blood parameter for assessing 
cognitive performance is creatinine. Previous studies 
have indicated that higher serum creatinine levels 
are associated with better overall cognitive 
performance, short-term working memory, and 
episodic memory, as well as associative learning in 
middle-aged men (Hakala et al., 2022). Additionally, 
other research suggests that creatinine 
supplementation in food may also improve  
short-term memory, intelligence, and reasoning 
(Avgerinos et al., 2018). Uric acid’s antioxidant 
properties can have beneficial effects, especially in 
the context of neurodegenerative diseases. Recent 
research indicates that uric acid may provide 
neuroprotective effects in Alzheimer’s disease and 
Parkinson’s dementia. Hypouricemia is considered a 
risk factor for accelerated disease progression and 
may serve as a potential marker of malnutrition. 
Conversely, elevated serum uric acid levels may 
have a detrimental impact on the course of vascular 
dementia (Tana et al., 2018). Zinc plays a critical 
role in the nervous system (Bhatnagar & Taneja, 
2001), functioning as a neurotransmitter and second 
messenger. It takes part in regulating hippocampal 
long-term potentiation, enhancing neuronal survival, 
and facilitating learning and memory processes 
(Choi et al., 2020). Various neurotransmitters offer 
valuable insights into cognitive function. For 
example, decreased extracellular levels of 5-HT 
(serotonin receptors) have been linked to impaired 
memory consolidation (Cowen & Sherwood, 2013). 
Furthermore, the significance of noradrenaline in 
numerous cognitive processes, such as vigilance, 
attention, learning, and memory, is well established 
(Holland et al., 2021). Dopamine receptors in the 
prefrontal cortex control three key aspects of 
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cognitive control—gating, maintaining, and relaying 
(Pillon et al., 2003). Leptin, the prototypical 
adipokine, expresses receptors across the cortex 
and various other brain regions. While 
predominantly investigated for its involvement in 
regulating energy intake and expenditure, leptin 
plays a pivotal role in numerous neurocognitive 
processes. It interacts with a range of hormones and 
neurotransmitters to fulfill these functions (Farr et al., 
2015). Indeed, leptin influences hippocampal-
dependent learning and memory, and more recently 
leptin has been shown to have antidepressant 
properties (Harvey, 2007). 
 
The research data provides a diverse set of methods 
for improving cognitive performance, including 
physical and cognitive exercise (Moniruzzaman et 
al., 2020), mindfulness practices (Cifu et al., 2018), 
and intermittent fasting (Ooi et al., 2020). These 
interventions have demonstrated effects on both 
cognitive performance and biochemical blood 
parameters. For instance, recent studies have 
shown that physical fitness levels are associated 
with performance in attention, memory, spatial 
imagery, reaction speed, and executive functions 
such as cognitive flexibility and inhibition control 
(Chang et al., 2012; Pontifex et al., 2012). Moreover, 
a high testosterone-to-cortisol ratio suggests greater 
anabolic drive and has been strongly associated 
with positive training and performance outcomes 
(Pedlar et al., 2019), while low iron status 
compromises the erythropoietic effects of altitude 
linked to endurance performance (Garvican-Lewis et 
al., 2018). Recent studies indicate that physical 
activity and exercise play a significant role in 
preventing and mitigating symptoms of depression 
(Agbangla et al., 2023; Danielsen et al., 2023; 
Jacinto et al., 2023; Josefsson et al., 2014; 
Rosenbaum et al., 2014; Sachs et al., 2023; Schuch 
et al., 2016) and may have antidepressant effects in 
individuals with neural system-related conditions 
(Adamson et al., 2015). 
 
Several studies suggest that regular physical 
exercise enhances daily performance by promoting 
better stress adaptation, reducing anxiety (Knöchel 
et al., 2012), and fostering the development of social 
skills (Erickson et al., 2011), memory (Winter et al., 
2007), and creative thinking (Oppezzo & Schwartz, 
2014). These observed effects are believed to be 
associated with exercise-induced neuronal 
adaptations and the interplay of monoamines 
(Acworth et al., 1986; Guillouzo & Guguen-
Guillouzo, 1986). Additionally, another study 
revealed a significant improvement in cognitive 
flexibility among participants undergoing aerobic 

training for 10 weeks, with no significant changes 
observed in attention and mental speed (Masley et 
al., 2009). Moreover, aerobic exercises positively 
influence the connectivity of the default brain and 
executive control networks, as well as synchronize 
brain regions associated with reward and attention 
(Voss, Erickson, et al., 2010; Voss, Prakash, et al., 
2010; Weng et al., 2017). Conversely, research 
investigating the effects of exercise on motor 
coordination in adults is relatively limited compared 
to aerobic exercise’s impact on cognitive functions. 
One notable study demonstrated that motor 
coordination training yielded better results in 
reducing task-switching costs compared to 
cardiovascular training (Johann et al., 2016). 
 
The effects of dietary restrictions on cognitive 
function have been extensively studied in recent 
years; however, the findings have not consistently 
demonstrated a clear pattern (Dias et al., 2020). The 
lack of consistency can be explained by variations in 
experimental protocols, leading to contrasting 
cognitive outcomes. For instance, in one study, it 
was reported that ketone-fed rats exhibited a 38% 
faster completion rate in an 8-arm radial maze test 
compared to those on other diets and made more 
correct decisions before errors occurred (Murray et 
al., 2016). Conversely, another study found that 
ketone-fed rats experienced severe impairments in 
visual-spatial memory and decreased brain growth 
(Zhao et al., 2004). In experiments with mice 
subjected to intermittent fasting, improved learning 
and memory capacities were observed based on 
Barnes maze and fear conditioning assessments, 
along with a thicker CA1 pyramidal cell layer, when 
compared to mice with unrestricted access to a 
regular diet (control mice; Li et al., 2013). 
Additionally, older adults with mild cognitive 
impairments who regularly practiced intermittent 
fasting showed better cognitive scores and 
displayed a reversal in cognitive function 
improvements over a 36-month period (Ooi et al., 
2020). However, a separate pilot study in humans 
reported a decrease in cognitive function, as 
assessed by the Montreal Cognitive Assessment, 
and short-term memory in the intermittent fasting 
group (Christensen, 1974). Despite the indirect 
effects of intermittent fasting on neuroplasticity and 
neuroprotective functions for both animals and 
humans having been detected, few studies have 
investigated changes in specific patterns of 
activation and functional connectivity within brain 
networks (Mattson et al., 2018; Murphy et al., 2014). 
 
Systematic reviews of various types of meditation 
have reported preliminary positive effects on 
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cognitive functions, including attention, memory, 
executive function, processing speed, and general 
cognition (Chiesa & Serretti, 2009; Dharmawardene 
et al., 2016; Gard et al., 2014; Goyal et al., 2014; 
Moore & Malinowski, 2009; Newberg et al., 2010). 
These beneficial effects are believed to be partially 
attributed to stress reduction. Additionally, 
longitudinal mind-body practices have been 
associated with gene expression changes related to 
inflammatory pathways and increased telomerase 
activity (Jacobs et al., 2011; Zhu et al., 2012). 
 
Comparative analysis has revealed distinct 
differences in the functional connectivity of the brain 
between more experienced and less experienced 
meditators, as well as changes in connectivity 
patterns among novice meditators. Specifically, 
participants with greater meditation experience 
exhibited increased connectivity within attentional 
networks, as well as between attentional regions 
and medial frontal regions (Hasenkamp & Barsalou, 
2012). During resting-state, meditators 
demonstrated greater resting-state functional 
connectivity (rs-FC) within the dorsal attention 
network (Froeliger et al., 2012). 
 
To explore changes in metabolism during cognitive 
tests after exercise, functional near-infrared 
spectroscopy (fNIRS) is often employed. Comparing 
the activity of the prefrontal cortex during meditation 
using fNIRS suggests that oxygen consumption in 
the right prefrontal cortex is increased during 
meditation compared to the resting state 
(Deepeshwar et al., 2015). At the same time, the 
effect of regular meditation on brain activity while 
solving cognitive tasks has not been sufficiently 
studied. 
 
The interpretation of the impact of these 
interventions is challenging due to several factors, 
including variations in the duration of interventions, 
participant demographics (age, gender, etc.), and 
the parameters measured. Although a growing body 
of evidence indicates a positive cognitive effect of 
the mentioned above practices, comparing their 
effects remains difficult due to differences in 
experimental designs. In our study, we sought to 
compare the effects of 8 weeks of regular physical 
exercise (either high-intensity interval training or 
strength training), intermittent fasting, and meditation 
on cognitive performance and physiology 
parameters. 
 
Based on previous data, we formulated the following 
hypotheses: 
 

1. Both meditation and exercise will enhance 
memory, attention, and cognitive flexibility 
while reducing biochemical markers of the 
stress. 

2. During cognitive tests, we expect higher 
oxygenation levels in the right prefrontal 
cortex for meditators and in the left 
prefrontal cortex for the exercise group after 
2 months of training. 

3. Regular meditation might result in an 
increase in global connectivity, and exercise 
may lead to the redistribution of connectivity 
patterns. 

4. Intermittent fasting could enhance cognitive 
performance through increased 
mitochondrial activity throughout the body. 

 
By examining these interventions’ effects on 
cognitive performance and physiological 
parameters, our study aims to contribute valuable 
insights into their potential benefits and mechanisms 
of action. Addressing these hypotheses will help 
bridge gaps in understanding the impact of these 
practices on cognition and overall well-being. 
 

Materials and Methods 
 
Participants 
Sixty healthy, right-handed Indo-European adults 
aged 25 to 50 were recruited to participate in the 
study. They were randomly and evenly assigned to 
four different groups. However, at the start of the 
study, two participants from the diet group dropped 
out, and one requested to be transferred to another 
random group. Consequently, 46 participants (22 
women, mean age 33.4 ± 7.7 years) completed the 
study: 14 in the meditation group, 8 in the diet group, 
16 in the exercise group, and 8 in the control group. 
 
Participants meeting the following criteria were 
included: (a) no prior regular practice of meditation, 
intermittent fasting, or exercise. Through interviews, 
it was confirmed that none had practiced intermittent 
fasting, attended meditation classes, or engaged in 
regular exercise over the past year. Moreover, none 
had participated in vipassana or held a degree in 
sports; (b) normal health as determined by routine 
clinical examination, with a BMI ranging from 18 to 
25. Individuals on medication or dietary supplements 
and those with medical records of mental or 
cognitive disabilities were excluded from the study. 
Participants with infectious diseases during the  
8-week study period were excluded from the 
analysis. 
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The study protocol and the nature of the 
experiments were explained to the subjects before 
obtaining signed informed consents. Each subject 
signed the consent form for routine medical 
monitoring, including the statement of agreement for 
the use of the results for scientific purposes. The 
study was conducted in accordance with the 
Declaration of Helsinki and approved by the Ethics 
Committee of I. M. Sechenov First Moscow State 
Medical University (protocol No. 28-19 on 
18.11.2022). 
 
Training Protocols 
All activities lasted for 8 weeks. Daily throughout the 
study, participants reported their activity parameters 
in a telegram bot: sleep time, heart rate, total 
training duration, the number of steps, the time of 
the last meal, and a subjective assessment of well-
being. The main goal of all groups was to follow the 
training program in a disciplined manner. The 
regularity of the exercise and meditation was 
checked by collecting heart rate samples from 
workouts and meditation sessions. The quality of the 
diet plan was assessed from the participants’ daily 
reports. 
 
Meditation (M). The participants in this group 
practiced twice a day, for 15–20 min in the morning 
and the evening. Each session included a warm-up 
exercise for the eyes, alternating breathing of the left 
and right nostrils (anuloma-viloma) for 5 min, and 22 
long breaths with a focus on sensing their nostrils. 
 
Intermittent Fasting (D). Participants in the diet 
group alternated 1 week of 8/16 intermittent fasting 
(16 hr of fasting every day) with 1 week of the  
low-carb diet between weeks of the cycle: Week 1 – 
8/16 intermittent fasting, Week 2 – low carb diet, 
Week 3 – 8/16 intermittent fasting, and so on for 8 
weeks in total. All participants received detailed 
verbal and written instructions on the diet plan and a 
list of recommended products. 
 
Exercise (E). The exercise group members trained 
three times a week according to a prewritten 
program. The training included a 5–10 min warmup 
of cardio-aerobic exercises, 20 min of  
static-dynamic training, 10–15 min of cardio-aerobic 
training, and 10 min of stretching. Static-dynamic 
training consisted of strength training for the thigh, 
lower leg, abdomen, back, chest, shoulder and 
gluteal muscles. The complete training protocol, 
including the number of repetitions, can be found in 
the Appendix B. 
 
 

Measurements  
To comprehensively study the influence of trainings, 
we measured a diverse array of metrics, including 
four cognitive tests, tissue saturation indexes (TSI) 
obtained through fNIRS, EEG functional connectivity 
analysis, biochemical blood tests, recurring daily 
reaction time assessments, heart rate variability 
(HRV) parameters, daily step counts, and sleep 
efficiency measurements. 
 
Cognitive Tests. All participants performed 
cognitive tasks with simultaneous measurements of 
brain activity with EEG and fNIRS taken twice: 
before the onset of the training process and 
immediately after (8 weeks after the first 
measurement). Each test lasted for about 30 min 
and included the following parts: 1 min resting state 
with eyes open, 1 min resting state with eyes closed, 
and four cognitive tests: Corsi test, Iowa gambling 
test (IGT), stop signal test (SSt), and task switching 
test (TSt; standard protocol tests from platform 
https://www.psytoolkit.org; Stoet, 2010, 2017). 
These tests were selected to check the performance 
of such cognitive domains as working 
memory/attention and executive function (Cullen et 
al., 2007). We did not consider the change in verbal 
memory, visual construction or abstract reasoning, 
based on other research (Kuczmarski et al., 2014; 
Northey et al., 2018) and because of the time limit 
for subjects sitting comfortably during the test. 
Based on the test results, we evaluated the following 
parameters: the maximum length of the memorized 
sequence and the rate of correct answers in the 
Corsi test for working memory, the percentage of 
selecting the low-risk variations in the Iowa gambling 
test, the cost of switching in the TSt and the 
inhibitory latency, the accuracy, and the time rate of 
correct answers in the SSt. The Corsi test included 
10 presentations of sequences of up to 10 elements; 
SSt included 90, TSt 120, and IGT 100 stimulus 
presentations, respectively. 
 
FNIRS. Measurements were conducted with NIRS4 
brain and body spectrometer (Medical Computer 
Systems Ltd., Moscow, Russia) using two 4-channel 
arrays of optodes (one light source/emitter and four 
detectors in each device) covering the frontal and 
prefrontal area. Each device was square-shaped, 
with a diagonal length of 5 cm. At the vertices of the 
square there were detectors and a source in the 
center. The device was installed in such a way that 
the diagonal of the first square fell on the positions 
F6 and Fp2, and the diagonal of the second square 
fell on the positions F5 and Fp1. Near-infrared light 
was used at two wavelengths (770 and 850 nm). 
Changes in the concentration of oxygenated (O2Hb) 
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and deoxygenated hemoglobin (HHb) were recorded 
continuously throughout the task with NIRSSensLSL 
Software. Signals obtained from the eight NIRS 
channels were acquired with a sampling rate of  
10 Hz. The raw optical density signals were 
converted to hemoglobin concentration changes (in 
mmol/mm) using the modified Beer–Lambert law in 
MATLAB (adapted NIRS to HbH, HbO, TSI 
Brainstorm functions). TSI is defined as a ratio 
between oxygenated and total hemoglobin: 
 

!"# = !!" + !"& 

#'( = !"&
!"# ∗ 100% 

 
The hemodynamic values corresponding to each 
cognitive test were calculated as the difference 
between the TSI averaged over eight sensors and 
the time of the test, and TSI averaged over eight 
sensors and 1 min with open eyes and no task. 
 
Electroencephalography (EEG). To study 
functional connectivity, we considered the EEG 
internode coherence. The coherence of two signals 
depends on their phase difference. Maximum 
coherence occurs when the phase difference is fixed 
between two signals. The coherence is zero (or near 
to zero) if the phase difference between two signals 
is random during time. Coherence is considered as: 
 

-.ℎ!"# (1) =
345!"# (1)6

3[5!!(1)] ∗ 	345""(1)6
 

 
where 5!"(1) is Fourier transform of the  
cross-correlation between EEG nodes (node i, and 
node j) and 5!!(1) is co-spectrum. Coherence was 
calculated in 10-s overlapping windows in the 
frequency domain, and then the coherences of all 
epochs were averaged over time. 
 
All EEG signals were recorded with a  
NeuroPlay-8Cap (ltd. Neuro-assistive technologies; 
Moscow, Russia) using 8 surface electrodes (F3, F4, 
C3, C4, P3, P4, O1, O2) mounted on a cap following 
the International 10–20 positioning system. The 
ground and reference electrode was A2. There were 
dry electrodes, the electrode impedance was kept 
less than 100 kΩ. This impedance is acceptable for 
dry electrode systems (Higashi et al., 2017; Shad et 
al., 2020). All data were digitized in continuous 
recording mode (125 Hz sampling rate). The data 
was preprocessed via scipy toolbox for python. The 
zero mean EEG data of each subject is 
preprocessed using a band pass filter in 0.5–48 Hz 
for removing the artifacts. The signal was divided 

into 1-s epochs, and all epochs in which the signal 
amplitude exceeded 100 :; were excluded. When 
the subjects were familiarized with the test 
conditions, the EEG was not recorded. EEG 
recording for analysis was carried out continuously 
throughout the test from the moment the start button 
was pressed until the end of the test. The division of 
the signal into epochs was carried out only for the 
purpose of clearing the signal. For further signal 
processing, spectral bands were used: delta  
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta1 
(12–18 Hz), beta2 (18–30 Hz), and gamma (30–48 
Hz). The relative spectral power was considered as 
the proportion of the power in a given band to the 
entire spectrum. Frontal characteristics were 
calculated using electrodes F3, F4, C3, and C4. 
Interhemispheric connectivity was considered as the 
average connectivity between pairs of electrodes 
C3-C4, P3-P4, C3-P4, and C4-P3. Sagittal 
connectivity was considered as the average 
connectivity between pairs of electrodes F3-O1,  
F4-O2, F3-O2, and F4-O1. 
 
Physiological Metrics: Blood Tests, HRV, 
Activity, Sleep. All participants used triaxial 
accelerometers to measure motion. The obtained 
data was used to estimate physical activity, 
sedentariness, and sleep quality. For consistency of 
the obtained results, HRV metrics were measured 
with the help of Welltory (https://welltory.com), an 
application which uses photoplethysmography and 
electrocardiogram measurements taken with BLE 
heart rate monitors like Polar, Apple Watch, Fitbit, 
and mobile phone’s camera. In this study, we 
collected physical activity levels including daily step 
count, active time, and sedentary time. Fitbit 
automatically deems the period of time active when 
a physical activity of at least three metabolic 
equivalents are performed. Sleep-related information 
is generated, including total time in bed, total sleep 
time, and awake time. Sleep efficiency was 
calculated as the combination of sleep duration and 
subjective fatigue feeling. Heart rate and HRV were 
measured every day at the same time of the day (in 
the morning or the evening). 
 
A Telegram chatbot was used to send reminders to 
the participants and to collect daily productivity data. 
Only the data from the users who filled in more than 
80% of the questionnaires was analyzed (n = 45). 
Most of the missed measurements were observed 
during the weekends (45% of missed 
questionnaires). Productivity was subjectively 
assessed by the participants themselves. Reaction 
time was measured based on the results of online 
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test completions (https://humanbenchmark.com/tests 
/reactiontime). 
 
Blood samples were collected in the morning from 
the antecubital vein into the clot activator tubes on 
Week 1 and Week 8. The investigable parameters 
were creatinine, uric acid, ALT zinc, testosterone, 
homocysteine, adrenaline, noradrenaline, serotonin, 
leptin, and dopamine. To eliminate interassay 
variance, all samples were analyzed in the same 
laboratory using the same methods. 
 
Statistical Analysis. The obtained data were 
analyzed for normality of distribution using the 
Shapiro-Wilk’s test. Since not all studied parameters 
appeared to be normally distributed, we utilized the 
nonparametric (Vickers, 2005) Wilcoxon’s test to 
compare the groups. Comparable values were in the 
form of differences between values at the end of the 
experiment (after 8 weeks of training) and at the 
beginning. To assess changes in cognitive test 
scores, TSI of fNIRS, and rhythmic characteristics 
and parameters of EEG functional connectivity, we 
employed a one-way ANOVA test. Post hoc Tukey 
criteria were applied for multiple test correction. The 
relationship between the values of various 
biochemical parameters and daily measurements 
was examined using the Pearson correlation 
coefficient. The values are presented as mean ± SD, 
with a p-value less than .05 considered statistically 
significant. All statistical analyses were conducted 
using the scipy.stats package in Python. 
 
Additionally, a priori and post hoc analysis were 
performed using the G*Power 3.1.9.7 software (Faul 
et al., 2007). Considering four groups with two 
repeated measures, a large effect size, an alpha 
error probability of .05, and a high power (1 − < > 
0.85), the required sample size for both ANOVA 
(repeated measures) and Wilcoxon’s test was 
determined to be 40 participants. With an alpha level 
of .05, the current sample size, and the effect size 
calculated for this study, we achieved adequate 
power (1 − < > 0.8) for most characteristics, except 
for a few noted in the results tables. 
 

Results 
 
Cognitive Tests 
For all types of data described in the measurement 
section, we compared changes in results for 
different types of impacts (groups: M, D, E, C). No 
significant correlations were found between data of 
different types. There were no significant differences 

across four groups in changes in the Corsi working 
memory metrics and IGT decision-making. However, 
it was observed that the inhibitory latency was 
significantly improved for M, D, and E groups as 
compared to C (Appendix Table A1), according to 
the SSt. There were no differences between the 
groups in the accuracy and speed of reaction in SSt. 
In addition, the M had significantly improved the 
executive function after two months of training 
compared to the E and D groups (Appendix Table 
A2). The executive function was assessed via the 
cost of switching between tasks in TSt (Figure 1A). 
 
Significant differences in 2-month changes in 
hemodynamics of the prefrontal cortex area, as 
indicated by fNIRS data, were observed in the TSt 
task: the M group showed significantly higher 
changes compared to both the D and E groups (see 
Appendix Table A2 and Figure 1B). Similarly, in the 
Corsi test, the M group showed more significant 
changes than the D group (see Appendix Table A3), 
and in the Iowa Gambling Test (IGT), the C group 
obtained higher changes compared to the D group 
(see Appendix Table A4). Thus, significant 
differences were only found for the TSt task in both 
test scores and changes in hemodynamics (see 
Figure 1B). Notably, 2 months of beginner 
meditation yielded better results for executive 
function and prefrontal cortex oxygenation during the 
TSt task compared to 2 months of intermittent 
fasting. 
 
Electroencephalography 
In the resting state with opened eyes no significant 
differences in absolute or relative spectral powers 
were found. However, there was a significant 
decrease in sagittal coherence for the meditator 
group compared to the diet (in theta and alpha 
bands) and control (in theta frequencies) groups. A 
significant decrease in coherence was also found for 
the E group: sagittal (theta, alpha), interhemispheric 
(theta, beta2), and left hemispheric (theta), in 
comparison to the D and C groups. In addition, the E 
group had a significant decrease in mean alpha, left 
and right hemispheric alpha coherence compared to 
the diet group, and a decrease in mean theta and 
left hemispheric beta1 compared to the control 
group (Appendix Table A5). A detailed comparison 
of rs-FC is depicted at Figure 2. Each part of the 
figure illustrates the significant differences in 
coherence changes for pairs of groups in the  
rs-FC between electrodes: (A) D-M groups, (B) C-M 
groups, (C) D-S groups, and (D) C-S groups. 
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Figure 1. (A) TSt Results by Groups. (B) Changes in Prefrontal Hemodynamics During the Solution of the Task 
Switching Test by Groups.  
 

   
       (A)                 (B) 
 

Note. (A) The vertical axis shows the decrease in switching cost in ms. Switching cost for M is significantly higher than 
for D and E groups. (B) The vertical axis shows the change in TSI in percent. Change in TSI for M and E is 
significantly higher than for D group. 

 
 

Figure 2. Significant Differences in Changes for Pairs of Groups in the rs-FC. (A) D-M Groups, (B) C-M Groups, (C) D-
S Groups, (D) C-S Groups. 
 

    
(A) (B) 

 

    
      (C)               (D)
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The pattern in FC during the test execution differs 
from the resting state. For M, compared with the E 
and C groups, interhemispheric coherence in theta 
and alpha significantly increased during SSt 
(Appendix Table A1). There was also a significant 
increase in the connectivity between electrodes C3 
and C4 in theta and beta2 ranges in the meditation 
group compared to the E group during TSt 
(Appendix Table A2). Other single connectivity 
changes can be found in Appendix Tables A1–A4. 
Significant spectral changes were observed only for 
the Corsi test in the beta ranges (Appendix Table 
A3). All changes in comparison to the Control group 
are illustrated in Figure 3. 
 
Biochemical Parameters 
Creatinine concentration changed significantly in the 
meditation group and the difference was reckoned 
5.04 ± 0.89 g/dl. Uric acid concentration also 
increased significantly in the meditation group and 

was 8.15 ± 1.62 g/dl, whereas in the other three 
groups it decreased and was 19.30 ± 6.29 g/dl and 
19.37 ± 5.44 g/dl in the functional training group and 
the fasting group respectively. Notably, we also 
observed a significant decrease in uric acid level in 
the control group, which amounted to 18.71 ± 7.12. 
Testosterone level remained the same in all the 
observed groups. Leptin increased significantly in 
the fasting group to 2.15 ± 0.04 g/dl. Regardless of 
the intervention type, serotonin decreased 
significantly in all the groups. It must be noted that 
the most dramatic decrease of serotonin was 
observed in the fasting group and the difference was 
estimated as 99.02 ± 7.04 g/dl. The meditation group 
also demonstrated a significant increase in zinc 
blood concentration, while the fasting group had 
increased norepinephrine concentrations. However, 
as for the rest of the observed differences, statistical 
significance could not be established for any of the 
parameters before and after the study. 

 
 

Figure 3. Significant Differences in Changes of FC In Comparison to the Control While Solving Different Tests 
(Which is Represented by Different Rows and Different Columns Correspond to Training Type).  

 

 
 
Note. Blue lines mean negative values, yellow lines are positive. Transparency characterizes the absolute 
values of changes. 
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Daily Measurements 
We observed a relationship between the intensity of 
training and reaction time in the exercise group. On 
days with high physical activity, participants reported 
fatigue more frequently compared to days with low 
physical activity (see Figure 4A). Furthermore, when 
comparing observed groups, we found a decrease in 
the number of daily steps in the fasting group 
compared to the control group (Figure 4B). 
 
Sleep efficiency, defined as a function of sleep 
duration and subjective perception of fatigue 

reported by participants, correlated well in most 
participants. We noted a significant difference in 
sleep efficiency within the fasting group. 
Interestingly, participants with low sleep quality in 
this group did not report fatigue as expected. 
 
We did not find significant changes in HRV 
parameters for the Diet or Exercise group. However, 
the values differed significantly in the meditation 
group when comparing values from the last week to 
the first, and moreover, after and before meditation 
(Figure 5). 

 
 

Figure 4. (A) Changes in Reaction Time After Training Session Depending on its Duration. (B) Average Number of Steps 
Per Day by Group. 

   
            (A)          (B) 

 

Figure 5. Changes in HRV Parameters After Meditation Practice.  
 

 
 

Note. All values were normalized on the corresponding values before meditation. 
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Discussion 
 
Our findings demonstrate that all types of the 
studied interventions, meditation, diet, and sports, 
positively affect the reduction of inhibitory latency 
equally in comparison with the control group, which 
is quite consistent with previous studies (Chang et 
al., 2012; Pontifex et al., 2012). We also reveal that 
different types of activity have different effects on 
cognitive function and patterns of brain activity. 
Specifically, we have shown that in order to increase 
the executive function, 2 months of meditation may 
be more effective than sports and diet for beginners. 
Based on the literature review, no similar 
comparison was carried out, although an increase in 
executive function was shown separately for 
meditation and sports (Gard et al., 2014; Moore & 
Malinowski, 2009; Newberg et al., 2010). 
 
Other researchers have repeatedly noted the 
connection between cognitive load in solving 
intellectual tasks and an increase in oxygenation in 
the prefrontal cortex (Causse et al., 2017; Verner et 
al., 2013). Although the current study did not find 
direct correlations between these indicators, the 
intergroup changes are in good agreement with the 
above trend. For example, according to the TSt in 
the group of meditators compared to the diet group, 
the results of the test itself and the level of 
oxygenation of the prefrontal cortex are significantly 
higher. 
 
Overall, we observed a decrease in prefrontal cortex 
oxygenation in the dietary group compared to the 
control group in IGT. There is also evidence that 
oxygenation for the diet group decreased compared 
with the meditation and exercise groups for the TSt 
and compared with the meditation group for the 
Corsi test. This could be explained by a more 
economical mode of activity of the whole organism 
under conditions of resource limitation. At the same 
time, the increase in oxygenation during problem 
solving in people who performed physical training is 
often explained by the general training of the 
cardiovascular system (Hötting et al., 2012), and for 
meditators—a conscious focus on brain activity 
(Miyashiro et al., 2021). We got little meaningful 
results for the diet group, partially because most of 
this group did not make it to the end of the study. 
Due to the low diet group size, only the high-impact 
results were recorded as significant. 
 
Less expected results were obtained for changes in 
functional connectivity. When interpreting these 
results, we aim to be cautious. However, it is 
important to note that observed changes significantly 

depend on chosen metric. Additionally, the 
limitations arise from the fact that many of these 
metrics are based on correlation. In the current 
study we observed the decrease in coherence in the 
M and E groups compared to the C and D groups in 
a resting state. At the same time, there was an 
increase in functional connectivity in the meditation 
group compared with the control group 
(interhemispheric in the SSt, in the Corsi test on the 
right side) and compared with the diet group (in the 
left hemisphere in the IGT) and an increase in 
functional connectivity in the exercise group in 
comparison with the control group in the Corsi test. 
Meanwhile, these results are quite logical and may 
be accounted for the efficiency of the brain of 
meditators and the group of sports has increased: 
lower energy consumption in a resting state and 
higher synchronization in solving specific problems. 
The evidence from meditation research is more 
conclusive. For example, a decrease in functional 
connectivity during meditation has been shown for 
all frequency ranges for five different meditation 
traditions (Lehmann et al., 2012). It is well known 
that the activity of the default mode network in 
experienced meditators decreases in comparison 
with the beginners, with a higher connectivity of the 
executive network of the brain, according to fMRI 
data (Brewer et al., 2011). 
 
At the same time, the data on the change in 
connectivity after several weeks of physical training 
are less clear-cut. For example, 12 weeks of walking 
showed an increase in functional connectivity in the 
PCC/precuneus for the elderly (Chirles et al., 2017). 
Similarly, 6-week Quadrato motor training in adults 
resulted in increased limbic and frontal-temporal 
connectivity in the alpha range with open eyes in a 
resting state (Lasaponara et al., 2017). At the same 
time, it was shown that gymnasts have a decrease 
in functional connectivity in the frontal-parietal and 
cingulo-opercular networks of attention control in a 
resting state. According to the authors, this 
decreased rs-FC might be due to the high intensity 
and amount of training suggesting a strong degree 
of automaticity leading to an increased neural 
efficiency (Dosenbach et al., 2007). Analyzing the 
studies on the effect of exercise on EEG data 
presented in the meta-review (Gramkow et al., 2020) 
showed that the final results are often contradictory, 
depending on the intervention and method of data 
processing. Perhaps such a difference in research 
results for meditation and sports can be explained 
by the fact that, regardless of the type of meditation, 
the practitioner often strives to control attention and 
stop the mind-wandering. While in physical activity 
the following processes can prevail: an increase in 
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power of the cardiovascular system, muscle growth, 
the increasing function of attention and thinking for 
playing sports, learning new movements, and 
redistributing the body’s resources. Another 
interesting outcome of our results is that for an 
exercise group at rest, frontal-occipital connectivity 
decreases across all frequency ranges. Another 
work (Beaty et al., 2018) shows the correlation 
between connectivity and creativity. In this article, 
creative people have higher fronto-occipital 
connectivity than noncreative people. Hence, it can 
be assumed that exercise for beginners can 
negatively affect their creativity. Although, in our 
work, in contrast to the work of Beaty et al. (2018), 
EEG was used instead of fMRI. However, it is not 
always possible to extrapolate trends in functional 
connectivity obtained for the EEG to fMRI data and 
vice versa (Plis et al., 2011), since due to different 
operating frequency ranges, the trends may not 
comply or even be opposite (Danks & Plis, 2019). 
 
The fasting group demonstrated a significant 
decrease in leptin blood concentration. The rapid (in 
8 weeks) decrease in serum leptin levels during 
fasting may indicate that leptin release was 
regulated by factors other than changes in the body 
fat mass. The lack of leptin changes during fasting, 
when basal insulin and glucose levels were 
maintained at basal levels, suggested that insulin 
and/or glucose might play a role in leptin release 
regulation (Boden et al., 1996). In the study of 
intermittent fasting in adults with mild cognitive 
impairment, subjects exhibited significant increment 
in superoxide dismutase activity and reduction in 
body weight, levels of insulin, fasting blood glucose, 
malondialdehyde, C-reactive protein (CRP), and 
DNA damage (Ooi et al., 2020). On the other hand, 
we observed an increase in norepinephrine. 
Previous studies on neurotransmitter levels in rats 
showed that fasting regimes caused a significant 
increase of serotonin and norepinephrine. 
Additionally, fasting caused a significant decrease in 
aspartate aminotransferase (AST), urea, and 
creatinine, alongside a decrease in the weight of the 
body, liver, and stomach while causing a significant 
increase in phagocytic activity and phagocytic index 
(Shawky et al., 2015). The participants of the current 
study did not demonstrate significant changes in 
AST and creatinine, which can be connected to a 
mild diet plan. 
 
In our study, we found a decreasing trend in urea 
level in all the groups, which can be explained by 
seasonal changes that were observed previously 
(Jacobs et al., 2011). Previous research also 
indicates that high serum uric acid may negatively 

influence vascular dementia. Contrarily, moderate 
levels of uric acid may have neuroprotector function 
(Tana et al., 2018). We assume that the dynamics of 
serum uric acid levels should be further monitored 
and possibly be a predictor of cognitive changes in 
response to daily routine changes. In our case, there 
was no significant change in epinephrine 
concentration in the fasting group, which can be 
found in patients with ketoacidosis (Christensen, 
1974). 
 
The participants in the fasting group demonstrated 
less consistency in their fatigue perception and 
sleep duration; there was no strong correlation 
between fatigue in the days after short sleep periods 
and sleep quality, as we observed in the other 
groups. It might be connected to the change in brain 
neuromediator concentration in blood serum 
(norepinephrine and serotonin). We assume that 
norepinephrine and serotonin serum levels can be 
considered as markers of human performance 
based on the current finding, and the combination of 
elevated levels of norepinephrine and decreased 
level of serotonin may lead to increased work 
productivity. Another reason for less subjective 
fatigue in participants might be connected to 
increased mitochondrial activity, which is observed 
during intermittent fasting (Lettieri-Barbato et al., 
2018). The current finding also provides evidence for 
mitochondrial influence on mood and cognition 
(Picard & McEwen, 2014). 
 
We found a significant increase in zinc blood serum 
concentration in the meditation group. A number of 
cross-sectional studies have investigated the 
association between physical activity and zinc 
status, while the obtained results remain 
contradictory. Some studies showed lower serum 
zinc concentration in athletes (Arikan et al., 2008), 
while other studies report no significant differences 
in zinc status between athletes and controls (Crespo 
et al., 1995; Nuviala et al., 1999). Still, there was no 
evidence reported on the influence of meditation and 
breathing techniques on zinc blood levels previously. 
The lack of conformity in the results may be driven 
by factors other than physical activity levels, for 
example, differences in dietary habits between the 
populations. In previous studies there are some 
evidence that during physical exercise the increase 
in plasma zinc levels might be the result of muscle 
leakage of zinc into the extracellular fluid following 
muscle damage (Noakes, 1987). Also, physical 
stress produced by exercise involves several 
neuroendocrine molecules that can interact with the 
metabolism (Sakata et al., 1991). 
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In the current study, we found a decrease of the 
creatinine’s level in the meditation group. It is 
consistent with the previous results on the effect of 
yoga on creatinine blood level. Patients with chronic 
kidney disease, undergoing a yoga-training regime 
along with conventional treatment showed a 
significant reduction in blood urea and serum 
creatinine values over a period of 6 months. This 
can be attributed to the significantly beneficial 
impact of yoga on renal functions (Pandey et al., 
2017). Our work demonstrates the positive effect 
that short meditations produce on creatinine levels. 
 
Breathing techniques that were used in the daily 
meditation practices in our study stretch the lung 
tissue and produce inhibitory signals from the action 
of slowly adapting receptors and hyperpolarizing 
currents. These inhibitory signals coming from 
cardiorespiratory regions might influence the 
functions of the autonomic nervous system and are 
associated with resultant conditions characterized by 
reduced metabolism and parasympathetic 
dominance (Balaji et al., 2012). Previous studies 
confirmed that 30 min of daily yoga practice for  
4 months showed a significant reduction in oxidative 
stress (malondialdehyde, protein oxidation, and 
phospholipase A2 activity) and an increase in 
antioxidant activity (superoxide dismutase and 
catalase activities) in patients with chronic kidney 
disease who were experiencing hemodialysis 
treatment (Gordon et al., 2013). 
 
Daily observations of HRV levels in the meditation 
group demonstrated improvement in HRV 
parameters right after meditation. There was also a 
significant decrease in HRV levels in comparison to 
the other groups at the end of the 8th week of the 
study. However, we did not find any changes in 
neuromediator blood serum concentration. The 
correlation between subjective perception of fatigue 
and sleep duration remained unchanged throughout 
the study, while some of the recent studies on 
hemodialysis patients demonstrated that 12-week 
yoga intervention has proven to alter fatigue levels 
(Yurtkuran et al., 2007). The same study reported a 
significant reduction in creatinine, blood urea, 
alkaline phosphatase, and cholesterol along with 
significant improvement in erythrocyte and 
hematocrit count, which is consistent with our 
observations of creatinine and uric acid blood levels. 
 
Changes in the concentration of uric acid and 
creatinine were registered in exercise groups which 
is consistent with previous studies (El Abed et al., 
2011; Groussard et al., 2003; Hammouda et al., 
2012). These findings are also consistent with 

previous observations showing that short aerobic 
exercise increases pro-oxidants more than 
anaerobic exercise (El Abed et al., 2019). We found 
that physical exercise led to better attention and 
reaction according to the daily tests and comparison 
of pre- and poststudy cognitive test results. It has 
been previously highlighted that physical exercise is 
related to improvement in reaction time (van de 
Water et al., 2017). Previous research also 
demonstrated that physical activity and exercise 
could support the development of cognitive 
functioning and specifically attention (Kao et al., 
2017). For this reason, it could be considered that 
the practice of physical exercise and the 
development of physical condition could have an 
impact on reaction time, whether directly, through 
training of the capacity to respond to a given 
stimulus, or indirectly, through the impact it would 
have on cognitive functioning (Gentier et al., 2013). 
 
The amount of daily physical activity has been 
related to reaction time. The participants who had 
more hours (more than 60 min a day) of physical 
activity showed a faster reaction. These results are 
congruent with previous research that had pointed 
out such associations (Okubo et al., 2017; Reigal et 
al., 2019). The significant differences in cognitive 
test results emphasize the importance of regular 
physical training for healthy adults. There was no 
correlation between fatigue and duration of exercise. 
While physical exercise therapy has been shown to 
increase HRV in healthy individuals (Dixon et al., 
1992; Furlan et al., 1993; Pichot et al., 2005), we did 
not observe a significant long-term effect of exercise 
on HRV levels. 
 

Conclusion 
 
The significant results of the pilot study show 
specific correlations between changes in cognitive 
functions, patterns of brain activity, and physiological 
parameters with the type of activity. Specifically, 
physical activity may have a positive effect on 
cognitive functions, especially in tasks related to 
attention and reaction time. In addition, the longer 
the exercise session, the faster the reaction time. 
However, physical exercise can have a negative 
effect on creativity in those with the condition. 
Meditation can be considered an effective way to 
improve executive functions. Although exercise and 
meditation have more immediate and direct positive 
effects, diet may have long-term benefits for brain 
performance. 
 
Insight into the various influences of these physical 
and mental practices may help tailor interventions 
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aimed at improving physiological and cognitive  
well-being. However, to make more accurate 
conclusions, it is necessary to conduct a series of 
studies on large samples, where different ages, sex, 
and types of activity will be widely represented, and 
also separate close-up studies for each area of 
activity, taking into account various mechanisms of 
influence on a person. 
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Appendix A 
 
Table A1 
Significant Differences in Changes for Different Interventions for the Stop Signal Test. SD – Standard Deviation 

Test Results (Inhibitory Latency, ms) ± SD 

Meditation > Control 
Meditation Control p-value power  effect 

12.97 ± 41.99 −43.78 ± 57.39 .02 0.76* 1.11 

Diet > Control 
Diet Control p-value power  effect 

9.90 ± 49.07 −43.78 ± 57.39 .02 0.61* 1.01 

Sport > Control 
Sport Control p-value power  effect 

16.38 ± 49.07 −43.78 ± 57.39 .02 0.81 1.13 

Functional Connectivity (Coherence) ± SD 

Meditation > Sport Meditation Sport p-value power effect 

Interhemispheric theta 0.125 ± 0.150 −0.055 ± 0.066 .03 0.76* 1.55 

C3 P3 theta 0.173 ± 0.155 −0.096 ± 0.104 .01 0.93 2.04 

Interhemispheric alpha 0.106 ± 0.118 −0.066 ± 0.064 .02 0.87 1.81 

C4 C3 alpha 0.193 ± 0.137 −0.159 ± 0.160 .02 0.97 2.36 

C3 P3 beta1 0.161 ± 0.180 −0.185 ± 0.118 .03 0.96 2.27 

Interhemispheric all rhythms 0.089 ± 0.127 −0.079 ± 0.060 .05 0.82 1.69 

C4 C3 all rhythms 0.149 ± 0.170 −0.144 ± 0.119 .02 0.92 2.00 

Meditation > Control Meditation Control p-value power effect 

Interhemispheric theta 0.125 ± 0.150 −0.053 ± 0.082 .03 0.73* 1.47 

C3 P3 theta 0.173 ± 0.155 −0.046 ± 0.121 .01 0.79* 1.57 

Interhemispheric alpha 0.106 ± 0.118 −0.066 ± 0.077 .02 0.84 1.73 

C4 C3 alpha 0.193 ± 0.137 −0.099 ± 0.133 .02 0.95 2.16 

Interhemispheric all rhythms 0.089 ± 0.127 −0.089 ± 0.103 .05 0.76* 1.54 

C4 C3 all rhythms 0.149 ± 0.170 −0.112 ± 0.157 .02 0.78* 1.60 
* = Power size below 0.8. 
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Table A2 
Significant Differences in Changes for Different Interventions for the Task Switching Test. SD – Standard 
Deviation 

Test Results (Switching Cost, ms) ± SD 

Meditation > Diet 
Meditation Diet p-value power effect 

255.22 ± 317.20 −72.89 ± 320.90 .03 0.71* 1.03 

Meditation > Sport 
Meditation Sport p-value power effect 

255.22 ± 317.20 −106.55 ± 386.17 .03 0.85 1.03 

FNIRS (ΔTSI) ± SD 

Meditation > Diet 
Meditation Diet p-value power effect 

0.38 ± 1.60 −2.48 ± 2.50 .04 0.84 1.36 

Sport > Diet 
Sport Diet p-value power effect 

0.22 ± 2.46 −2.48 ± 2.50 .04 0.68 1.10 

Functional Connectivity (Coherence) ± SD 

Meditation > Sport Meditation Sport p-value power effect 

C3 O1 theta 0.064 ± 0.108 −0.140 ± 0.053 .02 0.99 2.40 

C4 C3 theta 0.128 ± 0.207 −0.206 ± 0.152 .04 0.94 1.83 

C4 O1 beta2 0.055 ± 0.063 −0.078 ± 0.066 .04 0.97 2.06 

C4 C3 beta2 0.089 ± 0.156 −0.178 ± 0.066 .04 0.99 2.23 

F4 C3 all rhythms 0.058 ± 0.069 −0.138 ± 0.078 .05 0.99 2.66 

Control > Sport Sport Control p-value power effect 

C3 O1 theta −0.140 ± 0.054 0.009 ± 0.101 .02 0.96 1.84 

C4 O1 beta2 −0.078 ± 0.066 0.023 ± 0.063 .04 0.89 1.56 

F4 C3 all rhythms −0.138 ± 0.078 0.041 ± 0.122 .05 0.94 1.75 
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Table A3 
Significant Differences in Changes for Different Interventions for the Corsi Test. SD – Standard Deviation 

FNIRS (ΔTSI) ± SD 

Meditation > Diet 
Meditation Diet p-value power effect 

1.39 ± 1.53 −1.98 ± 2.05 .03 0.95 1.86 

Relative Power Spectrum Changes ± SD 

Meditation > Sport Meditation Sport p-value power effect 

Left hemisphere beta 1 0.028 ± 0.027 −0.070 ± 0.053 .04 0.99 2.33 

Meditation < Sport Meditation Sport p-value power effect 

Frontal beta2 −0.050 ± 0.020 0.041 ± 0.058 .05 0.99 2.47 

Meditation < Control Meditation Control p-value power effect 

Average beta2 −0.036 ± 0.026 0.071 ± 0.048 .02 0.99 2.77 

Frontal beta2 −0.050 ± 0.020 0.125 ± 0.101 .05 0.99 2.40 

Sport < Control Sport Control p-value power effect 

Average beta2 0.012 ± 0.037 0.071 ± 0.048 .02 0.78* 1.38 

Functional Connectivity (Coherence) ± SD 

Meditation > Control Meditation Control p-value power effect 

P4 C4 theta 0.147 ± 0.187 −0.130 ± 0.122 .03 0.94 1.75 

P4 C4 alpha 0.152 ± 0.187 −0.128 ± 0.132 .02 0.94 1.74 

Sport > Control Sport Control p-value power effect 

P4 C4 theta 0.082 ± 0.078 −0.130 ± 0.122 .03 0.97 2.07 

P4 C4 alpha 0.104 ± 0.051 −0.128 ± 0.132 .02 0.99 2.32 
 
 
Table A4 
Significant Differences in Changes for Different Interventions for the Iowa Gambling Test. SD – Standard 
Deviation. 
FNIRS (ΔTSI) ± SD 

Control > Diet 
Control Diet p-value power effect 

1.29 ± 3.42 −2.49 ± 2.93 .04 0.61* 1.19 

Functional Connectivity (Coherence) ± SD 

Meditation > Diet Meditation Diet p-value power effect 

C3 P3 beta1 0.093 ± 0.104 −0.160 ± 0.136 .03 0.60* 2.09 

O2 P3 gamma  0.086 ± 0.091 −0.100 ± 0.061 .03 0.99 2.40 

Control > Diet Diet Control p-value power effect 

O2 P3 gamma  −0.100 ± 0.061 0.044 ± 0.068 .03 0.93 2.22 
* = Power size below 0.8. 
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Table A5 
Open Eyes Resting State. Significant Differences in Changes for Different Interventions for the Resting State With 
Open Eyes. SD – Standard Deviation 

Functional Connectivity (Coherence) ± SD 

Meditation < Diet Meditation Diet p-value power effect 

Sagittal theta −0.055 ± 0.116 0.136 ± 0.189 .002 0.66 1.21 

Sagittal alpha −0.023 ± 0.136 0.182 ± 0.175 .004 0.71 1.31 

Meditation < Control Meditation Control p-value power effect 

Sagittal theta −0.055 ± 0.116 0.168 ± 0.111 .002 0.97 1.96 

Left hemisphere theta 0.0001 ± 0.117 0.130 ± 0.082 .003 0.74* 1.29 

Sport < Diet Sport Diet p-value power effect 

Sagittal theta −0.087 ± 0.066 0.136 ± 0.189 .002 0.84 1.58 

Interhemispheric theta −0.063 ± 0.062 0.098 ± 0.060 .020 0.99 2.63 

Left hemisphere theta −0.092 ± 0.051 0.105 ± 0.108 .003 0.98 2.33 

Sagittal alpha −0.093 ± 0.066 0.182 ± 0.175 .004 0.97 2.08 

Average alpha −0.063 ± 0.064 0.129 ± 0.142 .040 0.90 1.74 

Left hemisphere alpha −0.098 ± 0.093 0.135 ± 0.134 .040 0.96 2.02 

Interhemispheric beta2 −0.086 ± 0.064 0.090 ± 0.121 .020 0.92 1.81 

Sport < Control Sport Control p-value power effect 

Average theta −0.055 ± 0.040 0.111 ± 0.079 .020 0.99 2.65 

Sagittal theta −0.087 ± 0.066 0.168 ± 0.111 .002 0.99 2.79 

Interhemispheric theta −0.063 ± 0.062 0.096 ± 0.086 .020 0.98 2.12 

Left hemisphere theta −0.092 ± 0.051 0.130 ± 0.082 .003 0.99 3.25 

Sagittal alpha −0.093 ± 0.066 0.144 ± 0.093 .004 0.99 2.93 

Left hemisphere beta1 −0.055 ± 0.089 0.098 ± 0.072 .040 0.97 1.89 

Interhemispheric beta2 −0.086 ± 0.064 0.100 ± 0.120 .020 0.97 1.93 
* = Power size below 0.8. 
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Appendix B 
 
The Exercise group alternated between the first type of program (on the first training day) and the second type (on 
the second training day) throughout the entire experimental period. 
 
Program 1 (Main Section):  
1. Latissimus dorsi (back muscles)  

• Wide-grip lat pulldown to the chest 
• Wide-grip lat pulldown behind the neck 
• Narrow reverse-grip lat pulldown with a shortened range of motion 
• Horizontal row on a machine 

Series: Three sets of 30–40 s each; 30-s rest between sets. 
 

2. Pectoral muscles (chest muscles) 
• Wide-grip push-ups 
• Barbell press on a bench or machine 
• Dumbbell Flyes 

Series: Three sets of 30–40 s each; 30-s rest between sets. 
 

3. Abdominal muscles (abs) 
• Torso curls with hands in front (slight elevation, shoulders not touching the floor) 
• Leg raises while lying on the back (45–80 degrees at the hip joint) 
• Bent leg raises in a combined machine (short range of motion) 
• Vertical leg raises while lying on the back, lifting the glutes off the floor: additional weights and machines 

can be used. 
• Curls with a slight twist and side leg raises 
• Torso curls while lying, knees bent and turned to one side (touching the floor) 
• Torso curls while lying, knees bent and turned to one side (touching the floor) 

Series: Three sets of 30–40 s each; 30-s rest between sets. 
 

4. Leg muscles (gluteal muscles) 
• Leg press (feet positioned high on the platform) 
• Extensions on an inclined bench 
• Squats in a Smith machine 

Series: Three sets of 30–40 s each; 30-s rest between sets. 
 
*Two sets in total. 
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Program 2 (Main Section):  
1. Muscles of the front thigh 

• Forward lunges 
• Leg extensions on a machine 
• Knee raises while standing on one leg (using weights or resistance bands) 
• Leg raises (straight or slightly bent) while lying down (using weights or resistance bands) 
• Squats 
• Leg press 
• Half-lunge squats: 30–40 s per leg 
• Leg curls on a machine 
• Hip extensions (backward) while standing or lying down (using weights, resistance bands, crossover 

machine, or body weight) 
• Knee curls while standing or lying down (using weights, resistance bands, or body weight) 
• Pelvic paises with one leg support 

Series: Three sets of 30–40 s; 30-s rest between sets. 
 
2. Muscles of the back thigh 

• Leg curls on a machine 
• Hip extensions (backward) while standing or lying down (using weights, resistance bands, crossover 

machine, or body weight) 
• Knee curls while standing or lying down (using weights, resistance bands, or body weight) 
• Pelvic paises with one leg support 

Series: Three sets of 30–40 s; 30-s rest between sets. 
 
3. Muscles of the back calf 

• Calf raises with body weight or external weights (barbell, Smith machine) 
• Seated calf raises with external weights (barbell, dumbbells, etc.) or on a machine 
• Foot flexions on a machine 

Series: Three sets of 30–40 s; 30-s rest between sets. 
 
4. Abdominal muscles 

• Torso curls with hands in front (slight elevation, shoulders not touching the floor) 
• Leg raises while lying on the back (45–80 degrees at the hip joint) 
• Bent leg raises in a combined machine (short range of motion) 
• Vertical leg raises while lying on the back, lifting the glutes off the floor: additional weights and machines 

can be used. 
• Curls with a slight twist and side leg raises 
• Torso curls while lying, knees bent and turned to one side (touching the floor) 
• Torso curls while lying, knees bent and turned to one side (touching the floor) 

Series: Three sets of 30–40 s; 30-s rest between sets. 
 
*Two sets in total. 
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Abstract 
Of the mental health disorders, anxiety conditions maintain the highest base rate. The goal of this case study was 
to demonstrate the effectiveness of TRIPP VR, a virtual reality meditation application, utilizing a qEEG analysis 
program to recognize significant changes in brain wave patterns governing neuroelectrical impulses when 
compared to pretest results. Additional outcome measures included behavioral rating scales. A 13-year-old 
female demonstrating clinical signs of anxiety completed the required trials. Twenty-five sessions of meditation 
using TRIPP VR were administered to the participant over 8 weeks. Metrics used to demonstrate effectiveness 
included qEEG analysis and behavioral rating scales via a pre–post test design. Behavioral rating scales and 
qEEG analysis (which both use a normative population database) revealed marked decreases in the patient’s 
negative affect and anxiety as well as a significant decrease in hiBeta (20–30 Hz) amplitudes. Significant 
physiological changes were also noted in regions of interest (ROI) proposed to correlate with anxiety, impulsivity, 
depression, and emotional inhibition. Of note, the patient remained “at risk” for anxiety. The current findings 
provide preliminary evidence which demonstrates the immersive potential of VR therapy to reduce symptoms of 
anxiety and possibly other psychological conditions. Limitations and the implications of these findings are 
discussed. 
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Introduction 

 
Although standard treatment regimens have been 
established to treat anxiety, a variety of modalities 
continue to surface, particularly as technology 
advances. Methodologies for assessing gains in 
treatment are also numerous and include subjective 
report as well as quantifiable objective measures. 
Expansion of intervention modalities poses benefit 
for providers, their clients, and public health efforts. 
Cavallo et al. (2023) conducted a review of the 
scientific literature and found that over the past 
several years the application of virtual reality (VR) 
for mental health treatment has increased and is 
also supported by the American Psychiatric 
Association (APA, 2021). VR therapy is being 
promoted nationally and internationally for mental 

health conditions by companies such as Amelia 
Virtual Care (Gurr & Laitz, 2023) based upon clinical 
case studies that rely upon subjective outcome 
variables. In fact, EaseVRx recently received FDA 
approval for their VR treatment for patients 18 years 
or older diagnosed with chronic lower back pain 
(Food and Drug Administration [FDA], 2021). 
 
Anxiety conditions are the most prevalent mental 
health disorders in the world, occurring  
cross-culturally and impacting 4% of the global 
population in 2019 (World Health Organization 
[WHO], 2023). Alongside gold standard interventions 
such as cognitive behavioral therapy and 
psychopharmacology, meditation is a recognized 
tool utilized in the treatment of generalized anxiety 
disorder, social anxiety disorder, and other  
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anxiety-related diagnoses (Goldin et al., 2015; Hoge 
et al., 2013). As technology-based approaches grow 
in accessibility and relevance, VR interventions for 
anxiety continue to garner research attention. 
Studies have demonstrated that VR meditation 
interventions can significantly improve anxiety levels, 
worry, negative mood, and quality of life (Berberyan 
et al., 2023; Lepilkina et al., 2023; Riches et al., 
2023). Beyond meditation, other applications include 
biofeedback-related treatments, breathwork and 
exposure and response therapy (Donnelly et al., 
2021). Though novel utilities and drawbacks remain 
under investigation, VR interventions for the 
treatment of anxiety exhibit numerous benefits for 
the anxious client. 
 
Meditation interventions for anxiety are beneficial 
with or without VR components, illustrating the 
power of the practice (Navarro-Haro et al., 2019; 
Poetar et al., 2023). However, VR modalities have 
been shown to uniquely strengthen mental health 
treatment. The immersive nature of VR is often 
heralded as a major benefit of the tool, increasing a 
user’s sense of presence and therefore engagement 
(Cavallo & Brubaker, 2024; Curran & Hollett, 2024; 
Goral et al., 2024; Navarro-Haro et al., 2017; 
Seabrook et al., 2020). This has implications for 
mental health treatment, as difficulty with “buy-in” 
and continued engagement can act as barriers to 
continuing treatment. One study examining a 
mindfulness-based intervention with and without an 
adjunctive VR module for those with generalized 
anxiety disorder demonstrated improved adherence 
to treatment for the VR condition (Navarro-Haro et 
al., 2019). Other studies have shown similar 
outcomes, citing reduced dropout rates for those 
receiving VR imagery versus standard imagery 
during relaxation (Malbos et al., 2022). Further, 
some findings support advantages of VR-based 
meditation interventions that surpass participant 
engagement and perceived presence. It has been 
shown that VR treatments can aid in producing 
physiological changes in healthy and anxious groups 
(Mazgelyté et al., 2021; Tarrant et al., 2018). Lastly, 
a growing number of studies highlight the superiority 
of VR based interventions as compared to 
conventional meditation and mindfulness (Kaplan-
Rakowski et al., 2021; Ma et al., 2023). 
 
Though a promising treatment modality, barriers to 
utilizing VR meditation interventions have also been 
explored. As compared to traditional anxiety 
interventions, the use of a VR console or device 
necessitates an additional element of consideration 
for treatment. Difficulty with portability has been 
identified as a challenge (Nicksic Sigmon et al., 

2023). Additionally, though the immersive nature of 
VR tools has proven additive, it can also have 
adverse effects. In assessing motion sickness, some 
investigators have reported minimal impact on 
participants (Seabrook et al., 2020). However, 
simulator sickness has been shown to prevent 
engagement for others (Gao et al., 2024; Mimnaugh 
et al., 2023). Other barriers include weight of the VR 
device and perceived video quality (Seabrook et al., 
2020). Further, optimal dosage for VR sessions 
remains unknown, affecting clinical implementation 
(Gao et al., 2024; Ma et al., 2023).  
 
Alongside advancements in treatment fueled by 
technology, novel outcome methodologies have 
surfaced and continue to garner interest. 
Quantitative electroencephalography (qEEG) has 
demonstrated considerable potential for a variety of 
clinical applications, including epileptic screening 
and diagnosis, arrhythmia and stroke monitoring, 
and mood/anxiety disorders (Popa et al., 2020). 
Though exploration of the utility of qEEG has been 
plentiful, few studies have examined its suitability for 
VR interventions. To date, only one study has called 
the validity of qEEG data acquisition for VR users 
into question (Cavallo et al., 2023). Researchers 
tasked participants with staring at a neutral stimulus 
for a brief period both with and without a VR 
console; minimal differences in brainwave patterns 
were found between the two conditions, providing 
preliminary evidence of qEEG data obtained in 
conjunction with a VR platform. Barring this 
investigation, there is a dearth of knowledge 
surrounding the use of qEEG as an outcome 
variable for VR interventions. In one investigation 
that employed qEEG analysis for a VR mindfulness 
intervention in a sample of anxious participants, both 
VR and non-VR conditions experienced reduced 
anxiety; however, qEEG data aided in differentiating 
the groups, demonstrating a shift from higher to 
lower beta frequencies for those receiving the VR 
module (Tarrant et al., 2018). Additionally, traditional 
EEG analyses have been effectively employed for 
VR meditation interventions, evidencing comparable 
potential (Fu et al., 2021; Zhang et al., 2021).  
 
The present study aims to examine the effectiveness 
of a VR meditation application (TRIPP VR) using 
several objective outcome measures including 
brainwave analysis. As efficacious anxiety treatment 
is pertinent to public health, it is vital to continue 
exploring methodologies for intervention and 
treatment progression. While VR meditation has 
shown promise in improving mood symptoms, level 
of engagement and quality of treatment, its utility for 
anxiety conditions and relevant physiological 
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impacts continue to warrant exploration. Existing 
research suggests that VR may produce 
physiological changes, but qEEG has rarely been 
used to assess VR interventions. This case study 
will be the first to explore the effectiveness of the 
TRIPP VR application for a participant with clinically 
significant anxiety, utilizing rating scales and qEEG 
analysis in an effort to underscore objectivity and 
further bolster the utility of specific qEEG analysis 
tools which pinpoint regions of interest (ROI). In light 
of available empirical evidence, it is hypothesized 
that the participant will experience decreases in 
anxiety, coupled with aligning shifts in electrical 
activity following the intervention, particularly in the 
amplitude reduction of beta frequencies. 
 

Materials and Methods 
 
Participants 
The intervention was performed as a case study on 
a 13-year-old female showing clinically significant 
levels of anxiety. Since the participant was a minor, 
signed parental consent was received to provide the 
VR treatment and pre–post assessments from the 
participant’s parents. 
 
Equipment 
The tools used to complete this case study were the 
TRIPP app, an Electro-Cap, and a VR headset. 
TRIPP is a VR app, available on the Meta Quest and 
other VR platforms, that was created to assist 
individuals in developing meditation skills and 
improving focus and a sense of calm through 8- to 
12-min guided sessions, 3–5 times a week.  
 
Electro-Cap. QEEG data was acquired utilizing a 
standard Electro-Cap 19-channel EEG with ear lead 
attachments (Bio-Medical Instruments, Clinton 
Township, MI). They are made of an elastic 
spandex-type fabric with recessed, pure tin 
electrodes attached to the fabric. The electrodes on 
the standard caps are positioned to the International 
10–20 method of electrode placement. The size 
utilized for the current experiment ranged from 52–
56 cm (medium). 
 
VR Headset. The VR headset used to complete the 
TRIPP app sessions was the Meta Quest 2 headset 
(formerly the Oculus). The headset includes two 
handheld controllers. The Meta Quest 2 is usually 
used for gaming and watching 360-degree VR 
videos with 20 pixels per degree visuals and a  
fast-switch LCD display spanning 1832 x 1920 pixels 
per eye with a 120 Hz refresh rate. The headset 
weighs 503 g and measures 224 x 450 mm. 
 

Measures 
The case study included baseline testing and 
postintervention testing. The pre–post testing 
involved measurements of qEEG brain mapping 
analysis and behavioral rating scales. 
 
Behavioral Rating Scales 
The rating scales utilized for the current case study 
included the Behavior Assessment System for 
Children (BASC-3) and the Millon Adolescent 
Clinical Inventory (MACI-II). The BASC-3 is a  
self-report rating scale which identifies areas where 
adolescents are in the at-risk and/or clinically 
significant range for behavior and emotional 
problems. This process is done through a clinical 
and adaptive t-score profile composed based on the 
patient’s self-report. The report can also be 
completed by the patient’s parent or teacher. The 
MACI-II is an additional social and behavior rating 
scale that interprets if there are mental health 
concerns utilizing age-based comparisons. The 
MACI-II displays the following primary analyses:  
(a) profile summary for personality patterns,  
(b) expressed areas of concern, and (c) clinical 
syndrome scores. These MACI-II scores are based 
on normative data presented according to percentile 
ranks with cut-off scores for interpretable or clinically 
significant levels of elevation. For the purposes of 
the current case study, only the clinical syndrome 
scales were analyzed since the other two types of 
primary scores produced by the MACI-II lend 
themselves toward clinical and subjective 
interpretation. 
 
QEEG Brain Mapping Analysis 
QEEG is a procedure that processes the recorded 
EEG electrical activity of the brain with multiple 
sensors through an amplifier connected to a 
computer. The obtained EEG is processed with 
various algorithms, such as the fast Fourier 
transform (FFT). Using statistical analysis, the 
metrics are compared to a normative database of 
reference values. Colorized brain maps are 
produced as a result of the analysis. QEEG 
information is used as a tool to interpret areas of 
brain dysregulation and function by various experts. 
Pre–post qEEGs allow for tracking of changes in 
brain function as a result of various interventions 
such as neurofeedback, exercise or medication.  
This case study design also employed BrainMaster’s 
Z-Builder EEG analysis program to identify 
significant changes in an individual’s qEEG based 
upon the hypothesis that traditional qEEG analysis 
approaches using normative comparisons appear to 
be less sensitive to changes in atypical population 
samples. BrainMaster’s Z-Builder EEG analysis 
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program compares the individual to their own 
baseline qEEG analysis (Collura & Tarrant, 2020). 
 
Procedure 
The participant completed 25 sessions using the 
TRIPP VR app as a treatment protocol over an  
8-week period with initial guidance provided by a 
technician. Prior to the first session, the participant 
completed two behavioral rating scales that were 
delivered and completed electronically on a secure 
server. During the first session, the participant 
received an initial qEEG assessment before using 
the VR TRIPP. Subsequently, during the initial 
session, the subject wore a VR headset for 
approximately 10–12 min while watching and 
participating in VR guided meditation videos. The 
VR videos are designed to regulate breathing with 
an immersive and interactive experience. The 
participant then took the VR equipment home for 8 
weeks. Throughout those 8 weeks, they received 
weekly check-in emails. These emails included 
questions such as “how often do you remember to 
do your VR exercises?” and “do you have a specific 
time that you begin your sessions?” At the end of 8 
weeks, the participant came back to the office to 
return the VR equipment and complete the post 
qEEG and the behavioral rating scales (BASC-3 and 
MACI-II). A subsequent parental rating form for the 
BASC-3 was completed by the same parent that 
completed the BASC-3 prior to the intervention 
phase. 
 
Data Analysis 
QEEG is produced through statistical analysis of the 
EEG; that is, conversion of the time domain EEG 
record (voltage plotted against time) to the 
frequency domain (amplitude or power plotted 
against frequency) using the FFT. The qEEG bands 
considered were delta (1–3 Hz), theta (4–8 Hz), 
alpha (8–12 Hz), beta (15–20 Hz), and high beta 
(20–30 Hz). In this study, raw EEG data were 
collected noninvasively from the participant’s scalp 
before their first session and after the 8 weeks using 
a BrainMaster Discovery 20-channel EEG 
(BrainMaster Technologies, Bedford, OH). Electrode 
caps were used to place recording electrodes over 
the 19 standard regions defined by the International 
10/20 system referenced to linked ears: Fp1, Fp2, 
F3, F4, F7, F8, T3, T4, C3, C4, P3, P4, T5, T6, O1, 
O2, Fz, Cz, and Pz. All channels of EEG were 
acquired with 24-bit resolution at the sampling rate 
of 256 Hz. Automated artifacting using SARA was 
uniformly applied without exception in order to 
remove human error or bias in the analysis and 
selection of which data should be rejected. The 

NeuroGuide EEG and qEEG analysis system 
software (Applied Neuroscience, Inc., Largo, FL) 
was used for the signal processing of the qEEG. 
Quantitative data were presented using absolute 
power group means comparison between the pre–
post intervention brain waves. Statistical analyses 
were also performed utilizing NeuroStat’s paired  
t-test for comparing the absolute power differences 
between the pre–post test results conditions across 
the 19 scalp locations acquired for each of the five 
previously mentioned frequency bandwidths. Finally, 
critical p-values for determining level of significance 
were reported for both the paired t-test and 
BrainMaster’s Z-Builder EEG analysis tool. 
 

Results 
 
The case study included one adolescent female 
participant who met criteria for a generalized anxiety 
disorder based upon prior psychological evaluation 
results. Overall, behavioral rating scales and qEEG 
analyses illustrated moderate decreases in the 
subject’s anxiety symptoms as measured by 
behavioral rating scales and electrical brain activity. 
An examination of each outcome measure is 
presented below. 
 
Behavioral Rating Scales 
BASC-3. The participant and their guardian 
completed the BASC-3 rating scale prior to and 
following the VR meditation intervention (Reynolds 
et al., 2015). The BASC-3 measures several areas 
related to the behavioral and emotional well-being of 
children and adolescents. Of note, one subscale 
directly measures anxiety, while others assess 
different areas of functioning such as depression, 
self-esteem, and tendencies to internalize. An 
assessment of adaptive functioning is also 
embedded in the measure. For clinical scales,  
t-scores below 60 are considered unremarkable; 
between 60–69 indicate at-risk or slightly elevated 
levels of concern and are associated with behaviors 
that should be monitored; and above 70 reflect 
clinically significant or markedly elevated concerns 
that require immediate attention. For adaptive 
scales, t-scores are interpreted inversely, where  
t-scores above 70 are considered very high, 
indicating complete mastery in a specific adaptive 
area; between 60-69 are high; between 41–59 are 
average; between 31–40 indicate at-risk adaptive 
behaviors; and those below 30 reflect adaptive 
functioning that is clinically significant. Figures 1 and 
2 illustrate the pre–post t-score values for each of 
the domains and subdomains. 
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Figure 1. Participant Self-Report for the BASC-3. 

 
 

Pre 47 60 36 47 42 51 45 80 45 53 61 55 37 51 44 54 -- -- 48 61 40 66 55 

Post 44 55 33 42 40 62 53 64 45 45 42 50 37 48 42 48 -- -- 51 55 48 69 57 

Note. -- indicates that the scale is not available for this form or the age at the time of the administration is not scorable 
for the norm group selected. 

 
Figure 2. Guardian Report for the BASC-3. 

 
Pre 48 45 44 45 66 46 39 50 39 43 48 43 45 62 59 66 43 56 

Post 43 45 44 44 59 50 39 49 39 43 41 42 46 64 61 64 43 56 
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Perceptions of anxiety symptoms improved across 
raters. After the 8-week, 25-session intervention, the 
participant’s self-rated anxiety decreased from a  
t-score of 80 (99th percentile) to 64 (90th percentile). 
Though anxiety remained a relevant behavioral area 
for monitoring, scores indicated notably decreased 
severity of symptoms such that the participant’s  
t-score no longer fell in the clinically significant range 
according to a normative sample. Regarding 
guardian ratings, t-scores for anxiety decreased from 
66 (92nd percentile rank) to 59 (84th percentile rank) 
such that the posttest t-value fell into the 
unremarkable or typical range. Additional changes 
were noted on the self-report form. The participant 
was no longer in the at-risk range for somatization, 
dropping from a t-score of 61 (86th percentile rank) 
to a t-score of 42 (15th percentile rank), representing 
typical levels of somatic complaints. Additionally, 
scores were in the at-risk range for self-esteem 
concerns prior to the module; self-ratings in this area 
improved similarly, with t-scores increasing from 40 
(14th percentile rank) to 48 (32nd percentile rank). 

Of note, the participant’s locus of control score 
evidenced an increase from a pretest t-score of 51 
(64th percentile rank) to a posttest t-score of 62 
(87th percentile rank), indicating mildly at-risk levels 
following the intervention. 
 
MACI-II. The participant also completed the MACI-II 
(Millon et al., 2020). This rating scale is tailored to 
measure adolescent mental and behavioral health 
concerns. It contains several dozen scales in five 
clinically relevant domains. Among the areas 
measured are personality patterns, expressed 
concerns and clinical syndromes. Only the clinical 
syndrome scales were analyzed for the current 
study. Scores are presented as base rates (BR), 
which are set to reflect the prevalence rates of 
clinical syndrome criteria or classification. BR scores 
below 75 are unremarkable. Those between 75 and 
85 are considered to be present, and scores above 
85 are deemed prominent and clinically significant. 
Table 1 illustrates that prior to the intervention, the 
participant had a BR of 95 for anxious feelings, 
  

 
Table 1 
Pre vs. Post Self-Report for the MACI-II 

Clinical Syndromes 
Score 

PR 
BR Profile of BR Scores 

0 60 75 85       115 
Pretest Present Prominent 

Binge-Eating Patterns 58 60 
    
 

Substance-Abuse Proneness 30 0    

Delinquent Predisposition 9 0    

Anxious Feelings 76 95 
    
   

Depressive Affect 23 20 
    
 

Suicidal Tendency 21 0    

Disruptive Mood Dysregulation 22 20 
    
 

Post-Traumatic Stress 60 63 
    
 

Reality Distortions 23 9 
    
 

 

Clinical Syndromes 
Score 

PR 
BR Profile of BR Scores 

0 60 75 85     115  
Posttest Present Prominent 

Binge-Eating Patterns  23 0    

Substance-Abuse Proneness  30 0    

Delinquent Predisposition  9 0    

Anxious Feelings 65 85 
   
  

Depressive Affect  6 0    

Suicidal Tendency  21 0    

Disruptive Mood Dysregulation  17 10 
    
 

Post-Traumatic Stress  45 45 
    
 

Reality Distortions  23 9 
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which is considered prominent. Postintervention, the 
BR score for this subdomain was 75, eliminating the 
clinical relevance of this symptom. All other scales 
within the clinical syndrome profile were at 
nonclinical levels both before and after the 
intervention. Although nonclinical, a trend was 
evidenced posttreatment for decreased patterns of 
binge eating (a BR decline of 60 points), depressive 
affect and disruptive mood dysregulation (BR 
declines of 20 points), and posttraumatic stress (BR 
decline of 18 points). 
 
QEEG Analysis  
The 19 channels EEG recording had a duration of 
6:03 min for eyes open and a duration of 6:02 min 
for eyes closed condition for raw EEG signals (see 
Figure 3). After applying SARA to automatically 
remove artifact, EEG recordings of 4:38 min for eyes 

open and 3:44 min for the eyes closed condition 
were produced and used for data analysis. Figure 4 
presents qEEG analyses from the qEEG Pro report, 
which provides EEG Biomarkers based upon 
surface amplitude results and the agreement 
between the EEG results and the patients’ 
symptoms. The red bars in Figure 4 reflect that the 
participant’s symptom severity for anxiety remained 
unchanged. However, the relationship between the 
participant’s brain activity deviations from a 
normative population and the participant’s 
symptoms, as depicted by the green pie chart in 
Figure 4, revealed a 20% decrease in the deviant 
brain activity specific to anxiety and insomnia. The 
“high” color intensity depicted for anxiety and 
insomnia indicates a robust level of scientific support 
for the association between these biomarkers and 
the disorder (Keiser, 2018). 

 
 
Figure 3. Raw EEG Segment for Eyes Closed Condition. 

 
 
Figure 4. EEG Biomarker Match Pre vs. Post. 
 

    PRE       POST 
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The qEEG Pro report also uses source localization 
techniques to determine the activity and connectivity 
of well-known “resting-state networks” based upon 
scientific literature (Keiser, 2018) that indicates the 
following networks represent functional units: the 
default mode network, the dorsal attention network, 
the emotion regulation cortex, the sensory motor 
cortex, the memory network, and the visual cortex. 
For the purposes of the current case study, only 
those networks which revealed abnormal arousal 
and pathology during the pre-test qEEG assessment 
are presented. Analysis of the results revealed only 
the emotion regulation cortex (ERC) to be implicated 
as all other networks failed to reveal abnormal brain 
activity levels both before and after the intervention. 
The ERC plays a role in emotion regulation, 
empathy, risk assessment, decision-making, and 
fear processing. The ERC also consists of the 
middle frontal gyrus, which is involved in emotional 

decision-making and the orbitofrontal gyrus, which is 
known for its role in the evaluation of emotional 
stimuli and the representation of the somewhat 
intangible concepts of personality or “cognitive 
style.” The subgenual gyrus is also part of the ERC 
and plays a role in regulating emotion, endocrine 
function, and autonomic states associated with the 
neural processing of fear, reward, and stress. Figure 
5 depicts a clinically significant improvement in the 
hyperactive connectivity levels in the orbitofrontal 
cortex and subgenual gyrus before (50%) and after 
(0%) hyperactive connectivity levels, resulting in 
brain activity specific to the ERC being restored from 
high arousal and pathology levels to normal levels. 
Z-score analysis (Table 2) revealed excessive 
hyperactivity in the prefrontal and frontal lobe due to 
significantly higher amplitude in the High Beta 
waves. 

 
 
Figure 5. Pre vs. Post Brain Activity in Resting-State Network: The Emotion Regulation Cortex. 
 

PRE                                                                    POST 
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Z-Scores Analysis 
The results of the generated brain maps from the 
normative database did show statistically significant 
changes. The z-score analysis of the absolute power 
metric was utilized for analysis where the colors 
depicted in the maps below (see Figure 6) indicate 
the amount of standard deviation represented as  
z-scores. Based upon clinical practice, clinically 
significant deviations are indicated with an absolute 
z-score value of two or greater. The brain maps 
presented in Figure 6 suggest that, prior to the 
intervention, this individual presented with excessive 
High Beta activity present in the frontal, parietal and 
occipital cortices due to excessive power in those 
regions. Postassessment of brain activity evidenced 
decreased High Beta activity in the frontal lobe by at 
least one standard deviation (z-score difference of 1 
or greater). A z-score comparison (see Table 2) 
revealed significantly elevated power levels greater 
than two standard deviations from the normative 
database at the following locations in the High Beta 
frequency: Fp1 (SD = 2.2), Fp2 (SD = 2.2), F3 (SD = 
2.3), Cz (SD = 2.2), C4 (SD = 2.3), T5 (SD = 2.3), 
P3 (SD = 2.6), Pz (SD = 2.8), P4 (SD = 2.8), and T6 
(SD = 2.6). A postintervention z-score analysis 
(Table 2) revealed a decrease in power which 
represented typical power levels according to a 
normative database at the following locations in the 
High Beta frequency: Fp1 (SD = 1.2), Fp2 (SD = 
1.2), F3 (SD = 1.4), and C4 (SD = 1.9). 
 
Paired T-Test Analysis 
Neuroguide’s NeuroStat statistical software was 
utilized to provide an analysis of any significant 

intraindividual differences. This allows the analysis 
to measure improvement based upon the 
individual’s unique EEG activity as opposed to a 
comparison against a normative database targeting 
significant differences represented by populations 
means only. Figure 7 presents the paired t-test data 
for the within-subject, single case design. P-values 
are presented both pictorially in the brain maps as 
well as numerically. The color legend located below 
the brain maps indicates that statistically significant 
brain activity differences (p < .05) existed post 
intervention in the following EEG frequency bands 
and brain regions: Delta (left frontal, p = .006; right 
frontal, p = .009; left central, p = .001; frontocentral, 
p = .005; parietal, p < .04), Theta (left frontoparietal 
= .002; right frontal parietal, p = .000; left frontal, p 
= .000 − .01; right frontal, p = .000 − .001; left 
central, p = 0.000; right central, p < .04; left 
temporal, p < .02; frontocentral, p = .001; central, p 
= .002), Alpha (left frontoparietal, p = .001; right 
frontoparietal, p = .001; left frontal, p = .000 − .01; 
right frontal, p = .000 − .002; left central, p = .000; 
left parietal, p = .005; right parietal, p < .05; left 
occipital, p < .02; right occipital, p = .006; left 
temporal, p = .000 − .001; frontocentral, p = .001; 
central, p = .002), Beta (left frontoparietal, p = .000; 
right frontoparietal, p = .000; left frontal, p = .000; 
right central, p < .03; right occipital, p = .000; left 
temporal, p = .001; right temporal, p = −.001), and 
High Beta (left frontoparietal, p = .000; right 
frontoparietal, p = .000; left frontal, p = .000 − .001; 
right frontal, p = .001; left temporal, p = .000; right 
temporal, p = −.009). 

 
Figure 6. Pre vs. Post qEEG Absolute Power (uV Sq) Z-Score Values. 
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Table 2 
Pre vs. Post Amplitude Z-Scores According to Location and EEG Frequencies 
Pre    Absolute Power (uV2) 

Ch Delta Z-Delta Theta Z-Theta Alpha Z-Alpha Beta Z-Beta hiBeta Z-hiBeta 
FP1 26.7 −0.9 11.0 −0.6 7.9 −0.6 4.8 0.9 9.4 2.2 
FP2 25.5 −1.1 10.9 −0.6 8.8 −0.5 5.1 0.9 9.6 2.2 
F7 25.7 0.0 8.8 −0.4 5.9 −0.8 3.3 0.2 4.9 0.8 
F3 27.7 0.0 20.4 0.4 12.6 −0.4 8.5 1.1 11.1 2.3 
Fz 29.2 0.0 24.0 0.4 14.8 −0.3 6.5 0.5 7.9 1.7 
F4 26.1 −0.2 21.9 0.5 14.8 −0.2 6.6 0.5 8.3 1.3 
F8 19.0 −0.6 11.0 0.2 8.3 −0.3 4.6 0.9 6.2 1.2 
T3 13.8 0.2 8.9 0.2 9.1 0.1 5.2 1.1 8.1 1.6 
C3 24.5 0.2 18.0 0.1 18.0 −0.2 6.5 0.8 7.7 1.8 
Cz 42.1 1.2 29.8 0.6 20.2 −0.3 7.9 1.0 9.4 2.2 
C4 30.4 0.7 23.5 0.7 19.7 −0.1 7.8 1.0 9.7 2.3 
T4 18.7 0.9 12.1 0.9 11.1 0.3 5.0 0.9 5.9 1.0 
T5 20.4 0.3 14.7 0.3 24.4 0.0 8.0 1.2 9.5 2.3 
P3 27.6 0.2 19.5 0.2 34.5 0.0 8.1 0.8 10.7 2.6 
Pz 28.3 0.0 20.7 0.0 31.2 −0.3 8.7 0.9 11.1 2.8 
P4 27.9 0.1 20.0 0.2 32.7 −0.1 8.4 0.8 12.1 2.8 
T6 26.5 0.5 18.0 0.5 29.8 0.0 7.8 1.0 12.0 2.6 
O1 26.4 0.0 17.9 0.1 54.3 −0.1 10.3 0.8 14.6 1.7 
O2 26.5 0.0 18.6 0.1 41.2 −0.4 9.3 0.5 14.0 1.6 

 

Post     Absolute Power (uV2) 
Ch Delta Z-Delta Theta Z-Theta Alpha Z-Alpha Beta Z-Beta hiBeta Z-hiBeta 
FP1 28.1 −0.8 14.4 0.1 9.5 −0.3 4.3 0.6 5.9 1.2 
FP2 23.2 −1.3 13.2 −0.1 10.3 −0.2 4.5 0.7 6.3 1.2 
F7 28.8 0.3 10.7 0.1 7.5 −0.4 3.0 0.0 4.1 0.4 
F3 30.8 0.4 23.6 0.7 15.8 0.0 5.8 0.4 7.6 1.4 
Fz 33.2 0.4 26.5 0.6 17.7 0.0 7.3 0.8 7.5 1.6 
F4 29.0 0.1 23.9 0.7 17.5 0.1 6.3 0.4 7.8 1.2 
F8 23.2 −0.2 13.5 0.7 11.6 0.3 4.3 0.7 5.8 1.0 
T3 13.6 0.2 10.1 0.5 10.3 0.3 4.1 0.7 5.2 0.8 
C3 32.3 1.0 20.9 0.4 24.5 0.3 6.2 0.7 7.7 1.8 
Cz 51.8 1.8 34.4 0.9 26.1 0.1 6.9 0.7 8.7 2.1 
C4 36.8 1.3 24.8 0.8 24.3 0.2 6.5 0.6 8.4 1.9 
T4 18.6 0.9 11.0 0.7 12.7 0.5 4.1 0.5 4.8 0.6 
T5 23.0 0.5 15.6 0.4 32.7 0.3 6.5 0.8 8.8 2.1 
P3 33.6 0.6 20.1 0.2 43.4 0.3 7.5 0.7 10.5 2.6 
Pz 37.3 0.7 22.2 0.2 40.4 0.1 7.5 0.6 10.4 2.7 
P4 37.2 0.8 21.8 0.3 45.5 0.2 7.9 0.7 11.3 2.7 
T6 31.8 0.9 18.3 0.5 39.2 0.3 7.6 0.9 11.2 2.4 
O1 31.8 0.4 18.9 0.2 67.9 0.1 9.0 0.5 13.4 1.5 
O2 32.4 0.4 20.4 0.3 64.4 0.0 9.0 0.4 14.5 1.7 
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Figure 7. FFT Absolute Power Paired T-Test: Post Minus Pre Brain Maps. 

 
 
 
While Figure 7 simply indicates whether a significant 
change existed between pre vs. post-qEEG absolute 
power, Table 3 and Figure 8 below provide 
directional change indicators. Significant p-values 
presented in red font indicate a significant increase 
in amplitude/power in the indicated qEEG frequency 
bandwidths following the intervention. Conversely, 
significant p-values presented in blue font indicate a 
significant decrease in amplitude/power in the 
indicated qEEG frequency bandwidths following the 
intervention. The significant changes in amplitude 
from the post minus pre differences depicted in 
Figure 8 below indicate the magnitude of change in 

microvolts across the five qEEG frequency 
bandwidths. Based upon the brain maps displayed 
in Figure 8, the participant demonstrated increased 
power in frontal-central Delta up to 7.0 uV. Sq., 
frontal-central Theta up to 5.7 uV. Sq., central-
parietal Alpha and occipital Alpha up to 10.8 uV. Sq., 
and right-central occipital Beta up to 12.0 uV. Sq. 
Conversely, the participant demonstrated decreased 
power in frontal High Beta and in left-temporal High 
Beta up to −2.3 uV.Sq. This indicates that the 
participant’s overall brainwave power mean higher 
frequency shifted from the Beta/High Beta to higher 
Alpha mean frequency levels. 

 
 
Table 3 
FFT Absolute Power Paired T-Test: Post Minus Pre (P-Value) 

 Delta Theta Alpha Beta High Beta 
Intrahemispheric: Left 
FP1  0.050 0.002 0.001 0.000 0.000 
F3   0.006 0.000 0.000 0.000 0.000 
C3  0.001 0.000 0.000 0.221 0.643 
P3  0.081 0.122 0.005 0.559 0.187 
01 0.128 0.155 0.018 0.055 0.875 
F7  0.113 0.010 0.000 0.004 0.000 
T3  0.436 0.011 0.001 0.001 0.000 
T5  0.869 0.121 0.000 0.928 0.292 
Intrahemispheric: Right 
FP2 0.500 0.000 0.001 0.000 0.000 
F4  0.009 0.001 0.002 0.224 0.300 
C4 0.115 0.036 0.090 0.025 0.345 
P4  0.081 0.119 0.041 0.071 0.613 
02 0.298 0.178 0.006 0.000 0.208 
F8  0.003 0.000 0.000 0.946 0.001 
T4 0.643 0.830 0.116 0.000 0.009 
T6  0.517 0.784 0.061 0.469 0.355 
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Table 3 
FFT Absolute Power Paired T-Test: Post Minus Pre (P-Value) 

 Delta Theta Alpha Beta High Beta 
Intrahemispheric: Center 
Fz  0.005 0.001 0.000 0.259 0.067 
Cz  0.116 0.000 0.002 0.073 0.339 
Pz  0.036 0.130 0.071 0.178 0.269 
 
 
Figure 8. FFT Absolute Power Difference: Post Minus Pre (uV Sq). 

 
 
 
Z-Builder ROI 
Finally, the Z-Builder tool compares specific 
Brodmann areas (BA) representing definitive regions 
of the cerebral cortex associated with specific 
sensory, motor, and higher cognitive functioning 
behaviors. The present Z-Builder analysis focused 
solely on the BA ROIs specific to biomarkers related 
to anxiety. The Z-builder analysis compares the 
individual to their own baseline qEEG. The BA ROI’s 
selected for pre-post comparison were BAs 10, 11, 
32, and 46. Because the Z-builder analysis program 
does not provide brain map comparisons of pre-post 
differences, Table 4 below provides Z-score values 
for ROIs for which a Z-score, or standard deviation, 
of ±0.7 or higher was obtained, as per the 
recommendations of the Z-Builder developer 
(Collura & Tarrant, 2020). Significant changes were 
evidenced in the Beta (12–25 Hz) and High Beta 
(25–30 Hz) wavebands. Many of the BA ROIs listed 
in Table 4 indicate a significant change 
postintervention with the greatest magnitude of 
change occurring in a reduction of High Beta in BA 
10 (SD = −1.09), BA 11 (SD = −1.035), and BA 46 

(SD = −1.005). Figure 9 provides a visual 
representation of the BA brain regions positively 
impacted along with the neuropsychological 
functions correlated with the specific BA. 
 
 
Table 4 
Z-Builder Specific BA ROI Analysis 

ROI Name Beta.LR Hibeta.LR 

Brodmann 10 −0.763 −1.09 

Brodmann 11 −0.829 −1.035 

Brodmann 32 −0.456 −0.831 

Brodmann 46 −0.862 −1.005 

Color Code for Z-value 

Z-score is >/= 0.70 − 0.99 

Z-score is >/= 1.00 
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Figure 9. Z-Builder.  
 

    
Brodmann 10 Brodmann 11 Brodmann 32 Brodmann 46 

 
Site BA ROI Function 

Fpz 10, 11, 32 emotional inhibition, oversensitivity, impulsivity, motivation, and attention 

Fp1 10, 11, 46 cognitive emotional valancing (lateral orbital frontal), irritability, 
intrusiveness, depression, social awareness (approach behaviors) 

Fp2 10, 11, 46 emotional inhibition (lateral orbital frontal), impulsivity, tactlessness, mania, 
social awareness (avoidance behaviors) 

 

 
 

Discussion 
 
This case study set out to determine the efficacy of 
TRIPP VR, a VR meditation application, as 
measured by standardized behavioral rating scales 
and changes in physiological brainwave patterns. 
The findings from this investigation highlight several 
important considerations for the use of virtual and 
augmented reality technologies in anxiety treatment 
approaches and general mental health interventions. 
 
As predicted, the case study demonstrated notable 
and significant decreases in the participant’s anxiety 
levels, as evidenced by both behavioral rating scales 
and qEEG analysis. The reduction of the 
participant’s anxiety symptoms supports the 
potential of TRIPP VR as a viable treatment 
approach for anxiety disorders. The immersive 
nature of VR meditation interventions may facilitate 
greater engagement and adherence to treatment, 
which can be a significant advantage over traditional 
modalities. In fact, the present case study yielded 
similar decreases in Beta activity while implementing 
VR-based training as evidenced in a prior study 
(Cavallo & Brubaker, 2024), which coined the term 
“beta shunting.” Further research should continue to 
explore the theoretical implications that VR training 
minimizes and/or blocks out external distractions at 
a level that promotes lower beta frequencies, thus 
allowing the user to engage in a more immersive 
learning experience.  
 
The fact that the participant remained in the at-risk 
range for anxiety suggests that while the intervention 

may be beneficial, TRIPP VR is not yet a standalone 
intervention and should be integrated with other 
therapeutic approaches for comprehensive 
treatment. Nonetheless, these findings, combined 
with the qEEG data revealing significant decreases 
in excessive frontal High Beta amplitude, indicate 
the potential for VR mindfulness training to result in 
brain state changes. When considering a recent 
randomized control study completed by Kral et al. 
(2022), which failed to replicate prior research 
findings suggesting structural brain changes (as 
assessed through fMRI) following traditional 
mindfulness interventions, the present case study 
findings suggests that mindfulness training delivered 
in a VR environment can result in a change in EEG 
brain activity. Furthermore, the paired combination of 
physiological and behavioral outcome measures 
employed in the current study provided a robust 
qualitative analysis, which yielded congruent and 
symbiotic levels of improvement in the participant’s 
behavioral and physiological manifestations of 
anxiety. While the results of this case study are 
promising, they are also limited by the study’s 
design. The single-case approach limits the 
generalizability of the findings. Additionally, the 
participant’s age and development are not fully 
representative of the broader population with anxiety 
disorders. To establish the efficacy of TRIPP VR, 
larger-scale studies are necessary. Additionally, 
diversifying the participant sample and including a 
control condition are recommended to expand 
findings. Such studies should also explore 
longitudinal effects and the sustainability of the 
observed benefits. 
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The positive outcomes observed in this case study 
suggest that TRIPP VR, in combination with qEEG 
analysis, holds potential as an innovative tool for 
anxiety treatment. For clinicians, incorporating  
VR-based interventions could enhance the 
therapeutic treatment approaches and offer patients 
novel, engaging options. Additionally, the feasibility 
and convenience of VR technology make it an 
enticing option, particularly in settings with limited 
access to traditional therapies. The results also 
suggest that VR could be an effective and very 
practical tool for school counselors and 
psychologists to use in an educational setting to 
address test anxiety and general school-related 
anxiety. Exploring the integration of TRIPP VR with 
other therapeutic modalities, such as  
cognitive-behavioral therapy, could provide insights 
into optimal treatment combinations. Investigating 
the use of EEG analysis tools in conjunction with VR 
and augmented reality interventions could also 
further delineate the neurophysiological factors 
underlying anxiety reduction and expand the 
development of personalized treatment protocols. 
For example, in the current case study the 
participant successfully restored High Beta 
amplitude brainwave activity to typical levels in the 
frontal and prefrontal cortices following the VR 
intervention. However, according to a normative 
qEEG database, although the participant’s High 
Beta amplitudes decreased slightly in the parietal 
and temporal lobes following the VR intervention, 
the amplitude levels continued to fall at or greater 
than two standard deviations above typical levels. 
From a clinical perspective, the combination of 
behavioral and physiological data suggests that the 
participant gained a better sense of cognitive and/or 
executive functioning control of their anxiety but 
might still struggle with autonomic sensory-motor 
manifestations of anxiety (i.e., twirling hair, picking at 
nails, verbal rumination, etc.). Therefore, while the 
VR training resulted in clinically significant 
improvements, a clinician might also build upon such 
success by introducing additional training modalities, 
such as biofeedback and/or neurofeedback, to target 
improvements in anxiety-related behaviors 
associated with High Beta amplitudes in the parietal 
and temporal lobes. 
 
In conclusion, this case study provides preliminary 
evidence supporting the use of TRIPP VR as an 
effective tool for reducing anxiety. While further 
research is necessary, the integration of 
technological advancements in mental health 
treatment offers promising avenues for enhancing 
patient outcomes.  
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Attachment Shock: Brainstem Reactivity in 
Developmental Trauma Implications for 
Neurofeedback and Psychotherapy 
Sebern Fisher  
Private Practice, Northampton, Massachusetts, USA  
 
Neglect and abuse in childhood impact every major 
system in the developing brain and these impacts 
endure all too often across a lifetime. These 
enduring effects are now most frequently referred to 
as developmental trauma. Research strongly 
suggests that emotional neglect is the core issue in 
developmental trauma. Research from Lyons-Ruth, 
et al. has found a particular attachment dilemma, 
established by the age of 18 months, that predicts 
“borderline personality” and suicidality in late 
adolescence (I will explain why I use quotes here in 
the talk). Lanius et al. have provided the most insight 
to date on the effects of early childhood trauma. 
They have done extensive research on the 
differences between the brains of those who have 
endured early trauma and those who have not. We 
will look at many of these findings particularly as 
they implicate the role of the brainstem in 
developmental trauma.  
 
The focus in psychotherapy and in neurofeedback 
has been almost exclusively on top-down, cortical 
control of subcortical drivers. As we will see, in 
trauma the driver is the brainstem, more specifically 
attachment shock that is retained in the brainstem. It 
is the brainstem that elicits the reactivity of the 
amygdala and that drives thought patterns in the 
cortex. Neurofeedback protocols are being 
developed to quiet reactivity in the brainstem; I will 
share these, but my primary goal is to encourage 
clinical neurofeedback practitioners and Q-based 
researchers to take up this pursuit of quieting the 
brainstem. 
 

In my pursuit, I met Frank Corrigan, MD, the author 
of a new therapy called Deep Brain Reorienting and 
perhaps the world’s foremost expert on the 
brainstem. It is his contention that the shock of 
attachment rupture, as well as other traumatic 
shocks, are retained in the brainstem and, as long 
as they remain unprocessed, the person who has 
experienced them is at risk. Frank was a research 
psychiatrist at the NHS for many years, and he 
worked almost exclusively with severely traumatized 
patients. When I asked what motivated him to 
develop DBR, his response was direct and 
impassioned: “Too many people were dying.” His 
approach seems to facilitate a conversation between 
the patient and her brainstem. It is intriguing and the 
clinical outcomes, which I will show you, are robust. 
Presently several neurofeedback practitioners and 
researchers, myself among them, are meeting 
regularly with Dr. Corrigan and his coinvestigator, 
Jessica Christie-Sands, PhD, to see how we might 
enhance the synergy between neurofeedback and 
DBR for an even more effective treatment for those 
suffering with developmental trauma. This talk is 
your invitation into this very important conversation. 
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Affectivism, Components of Emotion, and the 
Emotional Brain  
David Sander 
University of Geneva, Geneva, Switzerland  
 
What is an emotion? What are its functions and 
brain substrates? How can we study and measure 
emotions and other affective phenomena? We will 
discuss the recently proposed notion of affectivism, 
the approach in which the inclusion of affective 
processes in models of mind, brain, and behavior 
not only explains affective phenomena but, critically, 
further enhances the power to explain cognition and 
behavior. This broad approach will be the basis of a 
discussion concerning the emotional brain and 
models of emotion. We will present a 
multicomponential definition of emotion: a particular 
event is first appraised by the individual according to 
their current concerns, values, and goals (or, more 
generally, motivational processes). Then, this 
elicitation process can trigger an emotional response 
in multiple components: autonomic physiology, 
action tendency, expression, and feeling. These 
processes modulate cognitive mechanisms such as 
attention, memory, learning, and decision-making. 
Several models of the emotional brain have been 
proposed and can be related to the major theories of 
emotion. For instance, affective neuroscience 
approaches have been used in reference to the 
basic emotion theory, to constructionist theories, and 
to appraisal theories. With respect to the emotional 
brain, most theories of emotion agree that many 
cerebral regions and networks are important for 
various emotional processes and that the amygdala 
is a key region of the emotional brain, but important 
debates exist with respect to its specific function. A 
particular focus of the presentation will review results 
suggesting that the amygdala is neither specific to 
the emotion of “fear” nor to the affective dimension 
of “arousal” but is rather a key region that subserves 
the appraisal of concern-relevance. We will discuss 
the idea that this amygdala-based mechanism is a 
key basis of appraisal effects both on the emotional 
response and on several cognitive mechanisms 
such as attention, learning, and memory. 
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Towards a Road Map for Optimizing 
Neurofeedback Training Based on Research and 
Cognitive Neuroscience  
Eddy Davelaar 
Birkbeck University of London, Bloomsbury, London, England  
 
Neurofeedback is a complex learning paradigm that 
involves a number of neural and psychological 
learning processes. The dominant view is that 
neurofeedback learning is based on operant 
conditioning (Sherlin et al., 2011) and current 
theoretical work by myself and others has provided 
deeper analyses and mathematical foundations 
(Davelaar, 2018; Lubianiker et al., 2022). These 
advancements help in understanding the dynamics 
of neurofeedback learning, but they also highlight 
points of continued confusion shared among 
academics and clinicians. For example, asking the 
question of “how many sessions is optimal for 
learning?” might trigger answers based on clinical 
experience or estimates based on extrapolations 
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from research. Both approaches are valid but are 
conditionalized on the technical settings of the 
neurofeedback equipment (threshold choice, 
feedback type) and the individual characteristics of 
trainees. These considerations matter when 
planning research (Ros et al., 2020) or managing 
clients’ expectations. Therefore, to provide a general 
answer to the main question, a number of 
preliminary questions need to be answered. Here 
lies the catch. In order to generalize, a large amount 
of data is needed that contains as many of the 
relevant parameters as possible, but in clinical 
practice and academic research, wild variations in 
parameter settings are rare or even impossible (if 
not unethical). Through collaborative research 
involving clinicians and academics (and equipment 
providers), there are ways to explore the large 
parameter space.  
 
In this talk, I will argue in favor of closer connections 
between neurofeedback clinicians and academics, 
whilst acknowledging their different objectives and 
time constraints. I will start with an examination into 
the behaviorist foundations of neurofeedback, 
discussing the particular version of behaviorism, 
Thorndikean behaviorism, that is explicitly adopted 
by clinicians. This contrasts with the actual version, 
Tolmanian behaviorism, being used, as revealed 
implicitly by the neurofeedback practice of setting 
thresholds. I then continue with addressing the 
question space, which demonstrates an appetite 
from clinicians and academics to understand more 
about the mechanisms of neurofeedback learning, 
its relation with other bodily processes, and how this 
knowledge can be used in a practical sense. Finally, 
I will present some progress from our lab that have a 
direct translation into clinical practice without 
impeding on existing standards. I will close with 
some suggestions on how clinical practice could 
feed into research programs and vice versa, opening 
up a discussion on a mutually beneficial road map 
that can educate the next generation of 
neurofeedback clinicians and researchers. 
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PLENARY SESSION PRESENTATIONS 
 
Clinical Implications of the Bayesian Brain, the 
Autonomic Nervous System, and the Triple 
Network 
Mark Smith  
Neurofeedback Services of New York, New York, New York, USA 
 
To reduce the inherent uncertainty in a changing 
environment, the brain evolved as a complex 
adaptive system. It functions as a predictive 
machine that aids in finding safety and satiation. 
When neither can be found, the brain seeks 
information in the internal and external environment 
to update its predictions. To optimally adapt to 
changing environments, the brain predicts what the 
next situation will be based on its intention and the 
context. It attempts to verify the accuracy of the 
prediction by using different senses. If no new 
information can be gained by the senses, the brain 
will resort to memory. Failure to update our 
predictive capacity may result in the overreliance on 
memory to solve life’s challenges. This often results 
in psychopathology, especially when those 
memories distort current functioning.  
 
The central autonomic network (CAN) impacts this 
maladaptive process through control of the 
sympathetic nervous system (SNS), the 
parasympathetic nervous system (PNS), and the 
enteric nervous system. Not simply the autonomic 
nervous system (ANS), the CAN is conceptualized 
as a combination of the ANS, endocrine, and 
immune systems. The SNS promotes a state of 
elevated activity known as fight or flight. The main 
goal of the SNS is to prepare the body for physical 
or goal directed activity. The PNS produces the rest 
and digest process that involves lowered heart rate 
and blood pressure. The main purpose of the PNS is 
to conserve energy and to regulate bodily functions 
such as digestion and elimination.  
 
The control of the CAN is embedded in the central 
hubs of the triple network. These three networks 
include the self-representational default mode 
network, the behavioral relevance assessing 
salience network, and the goal-oriented central 
executive network. As such, neurofeedback training 
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of these regions has proved useful for depression, 
anxiety pain, addiction, and a host of other 
psychopathologies. 
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See Your Brain, Train Your Mind, Change Your 
LIFE!  
Thomas Collura1, Ron Bonnstetter2, and Becky 
Bassham3 
1BrainMaster Technologies, Bedford, Ohio, USA 
2Target Training International, Scottsdale, Arizona, USA 
3Daywaneti, Thousand Oaks, California, USA 
 
While neuroscience and mental health professionals 
acknowledge the role of emotions in  
decision-making, application of this knowledge is 
hampered by the lack of a common language and a 
model that illustrates the potential neurological 
pathways. By better understanding the brain’s 
decision-making process and the role of emotions in 
those decisions, we can begin to expose the 
moment-by-moment dynamics of human behaviors 
and the role played by precognitive thoughts. Armed 
with this knowledge, we may be able to help 
individuals recognize and reflect on decisions in a 
more logical manner.  
 

This presentation will offer insights into how humans 
react to personal triggers in a conversation, thus, 
exposing underlying precognitive beliefs and related 
emotions that ultimately lead to our behaviors and 
decisions. We will highlight the protocols used to 
generate these modified event-related potentials 
with a focus on gamma frontal lobe asymmetry as 
well, exposing the asymmetry of Brodmann’s areas 
9 and 10 as primary emotional processing areas and 
Brodmann’s areas 44 and 45 as secondary 
emotional processing resource. Changes in these 
Brodmann areas, as a participant processes a new 
stimulus, will be presented using quantitative 
analysis and will serve as validation of the resulting 
parallel sLORETA visual maps.  
 
The ultimate takeaway from this presentation is the 
creation of a model that allows a client to see their 
thought and feelings (expanded self-awareness) and 
provide follow up training that leads to  
self-regulation. The power of seeing one’s brain, in 
real time, cannot be over emphasized. These 
concrete images have transformative ability. During 
the presentation, we will show pre–post videos 
exposing the ability to calm their brain and, as a 
result, alter their behaviors.  
 
Administering these protocols in real-world contexts, 
such as during coaching sessions, job interviews, 
and possibly even in psychotherapeutic milieus 
(given proper ethical constraints), are promising 
areas for additional study and promise to impact and 
potentially expose hidden decision-making 
mechanisms of the preconscious mind. 
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Optimizing Photobiomodulation for Brain Health: 
Latest Advances in Parameter Settings 
Lew Lim  
Vielight Inc., Toronto, Ontario, Canada  
 
Introduction. Photobiomodulation (PBM) harnesses 
light energy to achieve therapeutic outcomes, 
applying transcranial applications for brain health. 
Despite its potential, the PBM field, including 
transcranial PBM, relies heavily on outdated 
research, predominantly derived from cell culture 
and animal studies, with human clinical trials being 
relatively rare and heterogenous in methodology and 
protocols. Moreover, the market has many new PBM 
devices marketing with poorly supported claims, 
underscoring the urgent need for updated,  
evidence-based parameter settings and 
standardized reporting. This presentation aims to 
bridge this gap by unveiling novel discoveries that 
refine these parameters, thereby enhancing clinical 
outcomes. The knowledge gained from this 
presentation will benefit neurofeedback practitioners 
in the use of PBM to complement their practice. 
 
Methods. The research discussed here employs a 
multifaceted approach mostly used in parts before in 
the literature, integrating Raman spectroscopy to 
examine protein and cellular structures, alongside 
methodologies measuring cellular electrical 
properties, advanced microscopy, functional 
magnetic resonance imaging (fMRI), 
electroencephalography (EEG), magnetic resonance 
spectroscopy (MRS), and computer modeling. This 
comprehensive suite enables us to systematically 
explore the efficacy of various PBM parameters—
including laser/LED selection, wavelength, 
positioning, duration, pulse frequency, phase, 
coupling, and duty cycle—across proteins, cellular 
mechanisms, physiological responses, and clinical 

results. Our findings are extracted from both 
published literature and ongoing, unpublished 
studies, providing a robust foundation for our 
conclusions. 
 
Results. We have identified critical parameters, 
notably pulse frequency, power density, and  
light-source positioning, that significantly impact 
treatment efficacy. For example, pulse frequencies 
of 10 Hz and 40 Hz exhibit distinct effects on brain 
function, offering promising avenues for treating 
conditions such as dementia, traumatic brain 
injuries, depression, and autism. Similarly, 
wavelengths of 810 nm and 1060/1070 nm 
demonstrate unique physiological impacts, and 
optimal power densities identified at approximately 
100 mW/cm2 for transcranial irradiation and 5–9 
mW/cm2 for intranasal application. Strategic 
positioning and skin contact during transcranial 
application further enhance these effects. 
 
Conclusion. PBM stands out for its versatility and 
potential in brain health interventions. Through our 
research, we have observed how specific parameter 
settings can significantly boost PBM’s effectiveness. 
These insights pave the way for more targeted, 
efficacious treatments, underscoring the importance 
of continuous research and the integration of new 
findings into clinical practice for optimal patient 
outcomes. Practitioners using PBM will benefit from 
the updated information presented here. 
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EEG and the Search for the Buried Message: 
Application of Homomorphic Deconvolution, 
ICA, sLORETA, and Machine Learning 
Thomas Collura  
BrainMaster Technologies, Bedford, Ohio, USA 
 
We often think of the EEG as consisting of 
frequencies, generated by free-running oscillators. 
However, this belies the truth that the EEG is 
produced by a multitude of discrete events 
distributed in time. The classical evoked potential 
technique is a way of introducing these transients so 
that they can be measured as single events. The 
efforts to decompose the resting EEG have met with 
limited success due to the effects of volume 
conduction and the presence of many generators at 
once. The search for a “buried message” has long 
been deemed without merit, but this is due to the 
fact that the tools of the time (mathematics and 
computer processing) were not up to the task of 
detecting such signals.  
 
This report describes a method that successfully 
deconvolves resting EEG sources into events and 
time points, revealing the underlying discrete time 
structure. By first applying independent components 
analysis (ICA) to remove the effects of volume 
conduction, and then using a frequency-domain 
deconvolution, it is possible to see the morphology 
of individual brain events and to reconstruct the 
exact time points at which they occur. The detailed 
time statistics of each component reveals the pattern 
of subcortical spiking that elicits each brain event. 
While the qEEG is like a “blender” that analyzes the 
entire record without regard to morphology, this 
method is more like a scalpel and tweezers, that 
manages to identify and take apart the constituent 
events.  
 
In reading EEG, clinicians place high importance on 
the morphology of the waves and the exact timing, 
including effects that change across time. The qEEG 
does not reflect these aspects, as it insists on 
breaking the EEG into “frequency bands” that have 

predefined ranges, and it further analyzes the entire 
recording as one huge sample, albeit broken into 
segments (“epochs”). The method described here is 
based on first decomposing the signal into its 
apparent volume-conducted sources and further 
processing these components using  
frequency-domain averaging to produce an estimate 
of each event wave. The process further matches 
the signatures against the measured component, to 
determine the most likely times (“instants”) for the 
occurrence of each event. These time-point series 
provide important statistical information regarding 
the point process that defines the occurrence of 
these brain events. If this point process is highly 
regular, then a prominent frequency band may 
emerge, as well as harmonics reflecting the energy 
at all frequencies. If it is less regular, the energy will 
be more smoothly spread across the range. Some 
often visible components are eye blinks, eye 
movement, EKG artifact, blood-volume pulse, and 
similar physiological yet not-brain sources. 
Remaining sources reflect the commonly recognizes 
sources (posterior alpha, midline theta, etc.), and 
show additional detail, e.g., multiple PDR sources, 
or complex temporal sources. 
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App-Based Combined HRV and Frequency 
Harmonics Training: Quieting Through Both the 
Central and Autonomic Nervous System(s). 
Clinical Trial Results 
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This plenary session will show in-depth data from 
the 2024 clinical trials of an integrated app pairing 
standard heart rate variability resonant frequency 
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training with both subthreshold delivery of specific 
sound/harmonic frequencies and above threshold 
delivery of “colored” sound (e.g., pink versus white, 
green, or brown sound). The intervention was 
specifically engineered to gain coaccess through 
both the central nervous system (via auditory 
mechanisms) and the autonomic nervous system 
(via breathwork) with the aim of quieting 
regions/wave frequencies of the brain associated 
with hyperarousal.  
 
Participants included any individual over 16 years 
old, currently in treatment for active symptoms 
and/or diagnoses in the general classification of 
overarousal. This included poor stress tolerance, 
anxiety, anxious depression, anger outbursts, panic 
attacks, brain chatter, addiction/cravings, study/test 
anxiety, OCD, insomnia and their sequalae (e.g., 
nonrestorative sleep and fatigue), perseveration, 
argumentativeness, obsession, compulsion, 
cognitive rigidity (stubbornness), and eating 
disorders (and other practice of self-harm e.g., 
cutting), as well as hypervigilance (associated with 
trauma).  
 
Results show significant alterations in theta, beta, 
gamma, and alpha bandwidths at both Fz and O1 
(as per the 10/20 international system) associated 
with quieting. Subjective reporting of participants 
further aligned with statistical findings.  
 
Discussion will also cover unexpected secondary 
findings which turned out to be main effects. 
Specifically, markers of mental efficiency also 
improved fueling hypotheses regarding the power of 
an intervention that can quiet without sedative 
effects.  
 
Further discussion will differentiate universal effects 
versus gender-specific, condition/ailment-specific, 
environment-specific, and age-relative subeffects. 
Discussion will further cover therapeutic limitations 
and cautions as well as advantages including 
specific discussion of females (as per gender 
assigned at birth) and (sexual) trauma as well as 
gender neutral pedophiliac trauma; high 
stress/conflict exposure atmospheres and 
professions/professional stress tolerance, immune 
function, and toxin effects to name a few.  
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Habit Formation and Automaticity: 
Psychoneurobiological Correlates of Gamma 
Activity  
Caroline Leaf1, Charles Wasserman1, and Robert 
Turner2 
1Dr. Leaf, Southlake, Texas, USA 
2Network Neurology, Charleston, South Carolina, USA 
 
Mental health management is an emerging public 
health crisis (Kohn et al., 2004; Singh et al. 2022), 
and mental health services are insufficient (Patel et 
al., 2009), necessitating new effective, affordable, 
and accessible interventions that lead to sustainable 
change. To further research interventions to address 
this crisis, the current work examines the science of 
habit formation and automaticity as a possible way 
to create sustainable change and the improvement 
of mental health by building in practices leading to 
the discontinuation of detrimental behavior and the 
growth of practices that improve mental health. 
 
The present study used a unique 
psychoneurobiological approach, specifically looking 
at how habits and automaticity form using a whole 
person context in the hopes of contributing to how 
habit formation can be used in mental health 
interventions. While a sizeable body of literature on 
habit formation and automaticity looking at simple 
behaviors such as overall activity level and diet 
exists, few studies have investigated the complex 
behavior formation needed to instill new beneficial 
mental health habits. Additionally, limited research 
has looked at the neurophysiological or biological 
correlates of these mental processes and changes. 
Madhavan et al. (2015) proposed that, during active 
learning or recall, individuals exert more cognitive 
energy compared to information maintenance, 
resulting in heightened gamma activity. This new 
data demonstrates that gamma increases as 
learning is taking place then decreases once the 
behavior is learned (habituated), providing evidence 
of habit formation and automaticity and its nonlinear 
nature.  
 
The current pilot study seeks to contribute to the 
field’s developing knowledge of habit formation and 
automaticity as something that can be deliberately 
and mindfully learned, through a planned and guided 
approach over a specified time frame, to empower 
individuals to achieve lasting improvements in 
mental health challenges. Our research contributes 
practical strategies to improve interventions and 
achieve sustainable outcomes for the public health 
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emergency in mental health and build a more gestalt 
picture of the healing journey (Leaf et al., 2023). 
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EEG in Depth: Seeing Psyche in Brainwaves 
Tiff Thompson  
School of Neurotherapy, Santa Barbara, California, USA 
 
This presentation is of my dissertation work and a 
chapter published in the 2023, Introduction to QEEG 
and Neurofeedback. A theoretical interpretation of 
an EEG-based psychophysiology. The exploration to 
unfold in the presentation is the linking of Sigmund 
Freud’s and Carl Jung’s respective models of the 
psyche with electroencephalographic phenomena, 
neuroanatomy, and neurodevelopmental findings. 
This union is a marriage between star-crossed 
lovers: Romeo, being the brain’s electrical EEG 
patterns, from the family of objective, quantifiable 
and empirical physiology, and Juliet, as 
psychodynamic psychology, from a family of 
subjective, qualitative, and humanistic perspective. 
The progeny of these two camps is 
psychophysiology, which we will define as the 
interrelatedness of the third-person body/brain and 
the first-person mind/soul. These fields of neurology 
and psychology have historically been kept apart by 
the authorities of their respective academic and 
clinical circles. The loyalties of their respective 
camps have endowed their union with entanglement, 
rivalry, and disregard.  
 
The thesis we embark on in this presentation is as 
follows: the EEG spectrum covers the gamut of 
consciousness, from the recesses of the deep and 
primal unconscious (delta), through the waters of the 
personal unconscious (theta), into states of flow, 

trance, and meditation (alpha/theta and alpha), 
bridged to the ego states (beta); in pursuit of the 
self-actualized individual (gamma). The 
psychodynamic model of the psyche contains these 
same elements, in the same order: collective 
unconscious, personal unconscious, the cusp of 
unconscious and conscious, and ego; all of which, 
when integrated, lead to the capital “S” Self, the 
actualized individual. This chapter serves to define 
how the brain and the mind marry, via a 
psychodynamic lens.  
 
This talk is meant for an audience of mental health 
care practitioners who have ties to the field of 
psychology. It is not meant to be a reduction of the 
complexity and beauty of the empirical and 
neurological findings of EEG, but an interpretive 
lens, backed by tomes of research, into the deeper 
recessed of the human experience.  
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Can Mind-Matter Interactions Be Influenced by 
Low Power PEMF and Heart Rate Variability?: A 
Pilot Study 
Jeff Tarrant 
NeuroMeditation Institute, Eugene, Oregon, USA 
 
While psi-related abilities such as mind-matter 
interactions (psychokinesis; PK) are often 
considered controversial topics, there is a  
well-established literature exploring the empirical 
evidence for these experiences. The most extensive 
number of experiments on PK have focused on 
attempts to mentally influence output of electronic, 
binary-bit random event generators (REGs), referred 
to as micro-PK.  
 
One of the most extensive and well-known efforts to 
experimentally study micro-PK using REGs was 
conducted by the Princeton Engineering Anomalies 
Research Lab (PEAR; Dobyns, 2015; Jahn & 
Dunne, 2011). Over the course of a 12-year period, 
this lab studied 91 volunteer participants, each 
making multiple attempts, resulting in nearly 2.5 
million trials. The results clearly showed that trials 
involving mental influence deviated from mean 
chance expectation to a significant degree (Williams, 
2021).  
 
Other examinations of micro-PK effects have 
focused on the potential role of brain activity. For 
example, two studies have found a correlation 
between success on REG tasks and frontal lobe 
damage (Freedman et al., 2003; Freedman et al., 
2018), leading the researchers to suggest that the 
frontal lobes, and in particular the left middle frontal 
region may act as a filter to inhibit mind-matter 
interactions (Freedman, 2018). Supporting this 
notion, a recent article published in Cortex, found a 
significant micro-PK effect following rTMS inhibition 
of the left medial middle frontal lobe (Freedman et 
al., 2024).  
 
The current study sought to examine if the results 
above could be replicated with a low power PEMF 
device. Each participant engaged in three 
sessions/conditions, using counter-balanced 
methods along with heart rate variability recordings 
synchronized to the REG output. In each session, 

three microtesla coils (BrainMaster Technologies) 
were attached to the scalp in positions targeting 
either the left frontal lobe (Fp1, F3, and F7), the right 
frontal lobe (Fp2, F4, and F8), or the entire frontal 
lobe (F3, FZ, and F4; placebo condition). During the 
left and right conditions, the participant received 20 
min of randomized stimulation between 3 and 5 Hz. 
During the second half of each session the 
participant completed a series of three REG runs, 
each consisting of 200 trials, attempting to increase 
the output of 1’s rather than 0’s. Following 
stimulation, each participant completed an additional 
two REG runs.  
 
Data collection for this study is currently underway 
and will include approximately 12 participants. Data 
will be analyzed to test for condition, order, and time 
effects as well as any changes in HRV metrics 
related to REG success. Preliminary analyses 
suggest that the stimulation conditions result in more 
significant deviations (higher success) than the 
placebo condition, although there does not appear to 
be a significant difference between right or left 
hemisphere stimulation. The results will be 
discussed in relation to physiological mechanisms 
potentially related to mind-matter influence as well 
as implications for the argument that consciousness 
can influence structures outside of the physical 
body.  
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Preliminary Evidence for Efficacy of 4-Channel 
Live Z-Score Neurofeedback Training Among 
Individuals With Posttraumatic Stress Disorder 
Sungjin Im 
Western Kentucky University, Bowling Green, Kentucky, USA 
 
Individuals with traumatic experiences may develop 
symptoms of posttraumatic stress disorder (PTSD) 
along with comorbid conditions like anxiety and 
major depressive disorders (Brunello et al., 2001; 
Kessler et al., 2017). Past studies utilizing amplitude 
training and alpha-theta training have demonstrated 
the efficacy of neurofeedback (NF) in alleviating 
trauma-related symptoms (Peniston & Kulkosky, 
1991; van der Kolk et al., 2016). Despite symptom 
reductions, these studies often lacked an 
explanation of how targeted electrode sites were 
functionally related to PTSD symptoms. A potential 
solution to this issue is live z-score NF training 
(LZT), a state-of-the-art NF method that normalizes 
brain activity through real-time comparison to an 
age- and sex-matched normative database 
(Thatcher, 2013). Therefore, we conducted the first 
study to assess the acceptability and potential 
efficacy of LZT for treating PTSD. After a diagnostic 
interview using the MINI neuropsychiatric interview 
(Sheehan et al., 1998), 14 PTSD patients (8 
females; mean age = 21.06, SD = 2.18) underwent 
10 quantitative electroencephalogram (qEEG)-
guided LZT sessions and three assessment 
sessions at pre-, mid-, and posttreatment. Each 
assessment session included self-report measures 
of trauma-related symptoms, acceptability, and 
safety concerns, as well as a 10-min eyes-open and 
eyes-closed resting-state EEG recording. Training 
sessions, lasting 20 min each, involved participants 
watching a video of their choice. Repeated 
measures ANOVAs indicated significant 
improvements in the symptoms of PTSD, anxiety, 
insomnia, and emotion dysregulation. Additionally, a 
significant correlation was found between beta  
(13–30 Hz) power in the parietal region (P3 and P4) 

and self-reported PCL-5 scores. Although these 
results are promising, we found that the treatment 
effects, including changes in the pattern of the qEEG 
map, were not uniform across the participants, which 
needs further investigation. While these results 
require replication in larger samples with active 
control groups, the study provides evidence that LZT 
holds potential as an effective treatment for PTSD. 
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The Depression Network: A Neuroimaging Case 
Study of Acute Stimulation 
Kayla Kitch, Adele Zantopp, and Larry Stevens 
Northern Arizona University, Flagstaff, Arizona, USA 
 
Depression is an intense feeling of sadness, 
irritability, worthlessness, hopelessness, and an 
overall empty mood. The human brain depression 
network is a combination of the default mode 
network, task positive network, cognitive control 
network, salience network, reward network, and 
affective network. The common areas amongst 
these networks are the amygdala, thalamus, 
hippocampus, cingulate cortex, and prefrontal 
cortex. In clinical depression there is a general 
imbalance of the above networks. There is 
excessive activation of the default mode network, as 
well as increased activity in the medial prefrontal 
cortex, amygdala, and hippocampus. The 
neuroanatomical structure of depression shows 
structural and functional differences in the brain. The 
hippocampus and prefrontal cortex often show 
atrophy in depression. The cortical-thalamo-striatal 
network and cortical-thalamo-amygdalar network 
show overconnection. Within these networks there is 
too little projection from the amygdala to the striatum 
and too much projection from the amygdala to the 
nucleus accumbens. This single-case investigation 
of active stimulation of the depression network first 
conducted a 19-channel qEEG recording of a 
standardized eyes-open baseline of this human 
brain network and then presented to the participant 
a commonly depressive video recording. EEGs were 
then carefully artifacted and a dependent-groups  
t-test comparison of the depressive challenge minus 
the baseline was conducted. A comparison table of 
network output and three-dimensional, colored, and 
Brodmann-area labeled differences were then 
displayed showing the statistically significant brain 
regions activated by the depressive stimulus. 
Heightened activity from pre–post scan was noted in 
the lower right occipital lobe for this visual stimulus 
and in the upper left and right temporal lobes. There 
was a significant increase in activity during the 
intervention in the left temporal lobe, which could be 
due to depressive ruminations. There was also a 
decrease in activity from pre–post scan in the middle 
temporal lobe and the upper occipital lobe. There 
was also heightened activity in the left amygdala 
area from the pre- to postintervention scans. As 
reported in previous research, exaggerated 
amygdala activation has been noted in depression 
and sadness. It has also been previously 
established that the amygdala has a large 
involvement in emotional states and emotional 
stress. Discussion is presented highlighting the 

depression network brain regions activated by this 
acute stimulation and implications for neurofeedback 
treatment are offered. 
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The Human Pain Network: A Neuroimaging Case 
Study of Acute Stimulation 
Benjamin Iacobelli, Ramon Uribe, and Larry Stevens 
Northern Arizona University, Flagstaff, Arizona, USA 
 
Pain is described as an unpleasant sensory and 
emotional experience that sends threatening signals 
to the brain. Pain can be separated into two 
categories: 

• Acute: caused by noxious environmental 
stimuli which dissipates after a few minutes, 
lasting < 6 months 

• Chronic: pain persisting beyond the healing 
process, lasting > 6 months 

 
Pain processing and modulation begin at the 
nociceptors (sensory receptors for painful stimuli) 
and send signals throughout the peripheral (PNS) 
and central nervous systems (CNS). Then the brain 
processes the pain through various neurological 
areas such as the amygdala, thalamus, 
hippocampus, and habenula. Painful stimuli produce 
an increase in activity throughout the human brain 
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pain network. The Brodmann areas identified as 
most active during a pain-inducing event are the 
pain network, comprised of areas 1, 2, 3, 4, 5, 13, 
24, 32, 33, including the periaqueductal gray (PAG), 
the thalamus (Th), the primary somatosensory 
cortex (S1), the posterior parietal cortex (PPC), the 
insular cortex, the amygdala (Amyg), the prefrontal 
cortex (PFC), the anterior cingulate cortex (ACC), 
and the supplementary motor area (SMA). 
Modulating these pain sensations are more frontal 
areas including the ventromedial prefrontal cortex 
(vmPFC), the orbitofrontal cortex (OFC), the S1, the 
insula, the nucleus accumbens (NAc), the dorsal 
prefrontal cortex (dPFC), rostral anterior cingulate 
cortex (rACC), the thalamus, the amygdala, the 
periaqueductal grey (PAG), and the rostral 
ventromedial medulla (RVM). Quite obviously, many 
brain areas are involved in the sensation, 
perception, and processing/modulation of pain. 
 
This single-case investigation of acute active 
stimulation of the human pain network first 
conducted a 19-channel EEG recording of a 
standardized eyes-open and eyes-closed baseline 
and then presented to the participant a commonly 
used, moderately pain-inducing stimulus, the cold 
pressor test of the right hand submersed in a bucket 
of ice water. EEG activity was recorded during this 
pain challenge in both eyes-opened and eyes-closed 
conditions. EEGs were then carefully artifacted and 
a dependent-groups t-test comparison of the acute 
pain challenge minus each respective baseline 
condition was conducted, exploring primarily 
connectivity (coherence) measures. A comparison 
table of network output and three-dimensional, 
colored, and Brodmann-area labeled differences 
were then displayed showing the statistically 
significant brain regions activated by the pain 
stimulus for each condition. 
 
Results revealed that the eyes-open intervention 
produced significant hypocoherence connectivity 
between left Brodmann areas 1 and 4, S1, and 
primary motor cortex, respectively. The eyes-closed 
intervention resulted in hypocoherence in Brodmann 
area 1 only. Higher cortical activity was shown in the 
eyes-closed intervention when compared with the 
eyes-open intervention. Both interventions revealed 
that the prefrontal cortex, amygdala, thalamus, and 
habenula were highly active during the experience of 
acute pain. 
 
These results suggest that 19-channel swLORETA 
deep-brain neurotherapy targeted at reduced 
prefrontal cortical, amygdala, thalamic, and 
habenula activity could offer a reduced perception of 

pain, even for chronic pain conditions. Certainly, 
more research is indicated on a group basis, but 
these single-case results are suggestive of potential 
treatment pathways to be pursued in further group 
studies. 
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The Effectiveness of Neurofeedback for 
Refugees and Asylum Seekers With Trauma 
Symptoms: A Pilot Study 
So Rin Kim and Elizabeth Irwin 
University of Missouri-St. Louis, St. Louis, Missouri, USA 
 
The primary goal of the research is to assess the 
effectiveness of a neurofeedback protocol for 
refugees and asylum seekers with trauma 
symptoms. A growing amount of evidence supports 
the effectiveness of neurofeedback in reducing 
mental disorder symptoms (Micoulaud-Franchi et al, 
2021; Russo et al., 2022). Neurofeedback is a 
noninvasive treatment that instructs individuals on 
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ways to control their brain functions by measuring 
brainwaves and sending audio or video feedback 
(Marzbani et al., 2016). Because it does not require 
talk therapy, neurofeedback holds the potential to 
serve refugees and asylum-seeking clients despite 
language barriers. Improving access to  
evidence-based mental health care treatment is 
critical, particularly as 31% of refugees experience 
posttraumatic stress disorder (PTSD), which is 
significantly higher than the general population 
(Blackmore et al., 2020). However, the efficiency of 
neurofeedback in treating PTSD symptoms for 
refugee clients is under-researched. Askovic and 
colleagues (2020) published one known study on 
this topic; however, their study utilized an average of 
27 neurofeedback sessions. Not all refugees or 
asylum seekers have the social capital or resources 
to afford those treatments or participate for this 
duration of treatment. Thus, evidence to support the 
effectiveness of affordable and brief neurofeedback 
treatment for refugees or asylum seekers with 
trauma symptoms is necessary for mental health 
professionals and clients to make an informed 
decision about the treatments.  
 
This project serves as a pilot project to design an 
optimal neurofeedback protocol for refugees to 
alleviate trauma symptoms. We hypothesize that the 
trauma symptoms of refugees and asylum seekers 
who receive 10 neurofeedback sessions will be 
significantly decreased over time. We recruited 10 
participants who identify themselves as refugees or 
asylum seekers and provided 10 neurofeedback 
sessions to each refugee client, primarily using the 
4-channel Z-score Dynamix protocol. Measurement 
tools include the Posttraumatic Stress Disorder 
Checklist for DSM-5 (PCL-5) before and after their 
sessions each time. Results will indicate the 
decrease of the PCL-5 scores over time, suggesting 
the neurofeedback as an intervention to serve 
refugees and asylum-seeking clients with traumatic 
symptoms. 
 
The significance of this study lies in its potential to 
provide evidence for the effectiveness of 
neurofeedback as a treatment for trauma symptoms 
in refugees, a group that often faces barriers to 
accessing traditional talk therapy due to language 
and cultural differences. By demonstrating the 
feasibility of a brief and affordable neurofeedback 
protocol, this research aims to inform mental health 
professionals and clients about viable treatment 
options, ultimately contributing to the advancement 
of mental health care for refugees. The findings from 
this study are expected to have implications for 
clinical practice and literature in neurofeedback. 
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Effects of Interactive Brain Neurotherapy Based 
on fMRI-EEG-Neurofeedback on Structural 
Connectivity of Motor Cortex Networks in Stroke 
Patients 
Denis Klebanskiy1, Denis Novikov1, Mark Shtark1, and 
Estate Sokhadze2 
1Novosibirsk National Research State University, Novosibirsk 
Oblast, Russia 
2Duke University, Durham, North Carolina, USA 
 
Introduction. Structural connectivity is an indicator 
of the anatomical connectivity of brain regions and is 
analyzed by processing diffusion-weighted magnetic 
resonance imaging (DW-MRI). The method allows 
the visualization of the conductive pathways of white 
matter and investigation according to diffusion 
parameters. Neurofeedback (NFB) based on 
hemodynamic (fMRI) and EEG signals of the 
selected area of the of the cortex was used to 
assess effects of intervention in stroke. 
 
Materials and Methods. Study recruited 14 patients 
(58 ± 7.5 years) with paresis in the upper extremity 
with less than 6 months poststroke. The patients 
underwent neurorehabilitation and were divided into 
two groups: NFB group (N = 7) and control (standard 
of care only, N = 7) groups. Treatment in the NFB 
group was complemented by six fMRI-EEG-NFB 
sessions. Before (T1), after the course (T2) of 
treatment, and 6 months later (T3), test sessions 
were conducted using DW-MRI. Anisotropy was 
analyzed in the ipsilesional and contralesional 
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hemispheres, and corpus callosum. The  
DW-MR-tractography analysis was carried out in the 
above areas and all pathways passing through these 
areas. Among the diffusion parameters there were 
analyzed fractional, kurtosis fractional and 
quantitative anisotropies; average diffusion capacity; 
and axial and radial diffusion coefficients. 
Depression of any of the anisotropy indices 
characterizes the processes of demyelination and 
loss of axons in the pathways; an increase, on the 
contrary, reflects tracts densification and an increase 
in the structural connections.  
 
Results. All patients had changes of their structural 
connectivity in both hemispheres. During the  
pre–post period (T1-T2) in both groups the fibers of 
the ipsilateral tracts showed increased axial and 
decreased diffusion, and tended to loosen 
connectivity in the contralateral areas as indexed by 
decrease in kurtosis fractional anisotropy. The 
groups differed in changes in the corpus callosum 
connections. For the fMRI-EEG-NFB group, the 
fibers loosened in the projection of the premotor 
cortex showed increase in the radial diffusion and 
had consolidation in the projection of the primary 
motor cortex featured by decrease in the axial 
diffusion; whereas in the control group, there were 
noted the opposite effects. Six months later (T2-T3), 
both groups showed densification of fibers in a form 
of increased axial, radial, and middle diffusion 
coefficients, while the processes of demyelination 
and axon loss were still observed along the 
corticospinal tract in a form of decreased kurtosis 
anisotropy. There was a lower dynamic of axon loss 
ipsilaterally in the NFB group as compared to the 
control group. In the corpus callosum projection of 
the premotor cortex, the fibers showed increased 
fractional and quantitative anisotropies, and the 
same tendency was found in the projection of the 
primary motor cortex characterized by increased 
fractional anisotropy. 
 
Conclusions. Structural changes in stroke are 
occurring in both hemispheres, stimulating the  
long-term reorganization of the pathways. 
Complementing neurorehabilitation with 
neurotherapy based on fMRI-EEG-NFB as 
compared to standard of care neurorehabilitation 
resulted in a more pronounced decrease in the 
dynamics of axon loss along with their densification 
on the lesion side and an increase in 
interhemispheric structural connections. 
Acknowledgement: Supported by RFBR grant  
20-015-00385. 
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Single-Case Research Design: Exploring PTSD 
Protocols for Neurofeedback at a University 
Clinic 
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Neurofeedback has emerged as a promising 
treatment for PTSD, with its roots tracing back to 
Peniston and Kulkosky’s pioneering study in 1991 
on alpha–theta neurofeedback for Vietnam veterans. 
Building on this foundation, Gapen et al. conducted 
a pilot study in 2016, revealing encouraging 
outcomes for chronic PTSD patients. Subsequent 
research by van der Kolk et al. in the same year 
further validated these findings through a 
randomized, waitlist-controlled study, demonstrating 
statistically significant results. These developments 
signal a potential shift in both the treatment and 
conceptualization of mental health disorders and 
PTSD. 
 
Considering the complexity of PTSD and individual 
experiences, we aim to explore individual participant 
changes within their neurofeedback session data. 
While traditionally employed in educational research, 
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the methodology of single-case research designs 
(SCRDs) has garnered increasing interest across 
various disciplines in the past decade (Ganz & 
Ayres, 2018). Researchers turn to SCRDs when 
faced with numerous intervention data points and a 
desire to assess individual changes. Key 
characteristics of SCRDs include repeated 
measurement of the dependent variable over time, 
allowing for a nuanced understanding of the impact 
of interventions on individuals, organizations, 
businesses, or other groups (Kazdin, 2021). Our 
research questions are:  

(a) Is there a change over time in participants’ 
mean magnitude (i.e., band 1, band 2, and band 
3 in BioExplorer) of their neurofeedback 
session-to-session data, based on their 
corresponding brain wave frequencies?, and  
(b) How does participants’ 1st neurofeedback 
intervention period (Phase B) compare to their 
2nd neurofeedback intervention period (Phase 
C)?  

 
Phase B is participants' first university semester of 
neurofeedback sessions and Phase C is their 
second intervention period. Our data will consist of 
retrospective neurofeedback data collected at a 
university clinic by student clinicians. We will be 
utilizing five to six participants receiving 
neurofeedback for PTSD and their corresponding 
session data. Our analysis will consist of nonoverlap 
of all pairs (NAP) which is not reliant on trend lines 
or means (Parker & Vannest, 2009) and simulation 
modeling analysis (SMA), a software program that 
considers autocorrelation, testing slope, and line 
trends of the neurofeedback session data and runs 
5,000 simulation tests that determine the best fit 
model (i.e., trend line). 
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Analysis of Runner’s High Through Quantitative 
Electroencephalography and Computer-Brain 
Interface 
Ian Larger 
Northern Arizona University, Flagstaff, Arizona, USA 
 
Runners’ high is a short feeling of euphoria or bliss 
that occurs after running or physical exercise. These 
effects are typically felt after at least 45 min of 
running; however, it is not clear if its effect is 
enhanced with more strenuous running or longer 
times. In this study, the effects of runners’ high will 
be examined and analyzed through quantitative 
electroencephalography, which entails both EEG 
recordings and further analysis by brain-mapping 
software. This study is currently ongoing, and will 
take approximately 6 weeks, divided into nine total 
sessions. Participants will first be recorded by a  
19-channel EEG for an eyes-open and eyes-closed 
baseline. During the following interventions, 
participants will run various, set times then be 
recorded by EEG for 20 min directly after their runs. 
Before the interventions begin, participants will be 
given a questionnaire to assess their running 
capabilities, which will be used to create a running 
pace that they will follow during the runs. 
Participants will all run at a pace that allows them to 
exert effort in each run, but not too much to cause 
excess fatigue. The route that participants will run is 
going to be held constant, with the only thing 
changing being the time that they will run for. The 
participants will engage in the following runs as an 
intervention, where they will do one of these runs 
per week: a 15-min run, a 45-min run, two 55-min 
runs, a 75-min run, a 90-min run, then a final 60-min 
run. As said before, runner’s high only takes effect 
after 45 min, however the 15-min run is in place to 
serve as a sort of extra baseline test. The runs 
following the 45-min runs will be used to measure 
any increasing effects of runner’s high based on 
increased effort, and the final 60-min run is in place 
to examine if the effects of runners high dissipate as 
the runner becomes more adapted to longer runs. 
The EEG data will then be transformed into a  
three-dimensional view of the brain through low 
resolution electromagnetic tomography (LORETA), 
then a post minus preintervention t-test will be 
performed to analyze the results. The results will be 
analyzed based on the comparison of current source 
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density (CSD). CSD is a method to estimate the 
location, intensity, and direction of brain activity and 
their connections, and any hypercoherence or 
hypocoherence will be analyzed. As runner’s high is 
involved with feelings of sedation and anxiolysis, it is 
expected that the results will yield hypocoherence, 
specifically in areas such as the prefrontal cortex, 
the amygdala, thalamus, hippocampus, 
supplementary motor area, premotor area, primary 
motor cortex, the cerebellum, the ventral tegmental 
area, and the striatum. 
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Anxiety disorders are among the most prevalent 
neuropsychiatric disorders in the world. Within that 
category, generalized anxiety disorder (GAD) is one 

of the most common disorders having a more 
significant functional impact (Giacobe & Flint, 2018). 
GAD is a disorder characterized by its chronicity, 
exacerbated anxiety, and a difficulty to regulating it 
underlying a feeling of uneasiness which impairs the 
health and quality of life of those suffering this 
condition (APA, 2013). A better understanding of the 
neurophysiological processes associated with 
anxiety has raised an increased interest for 
interventions that influence the brain’s electrical 
regulation. Neurofeedback (NFB), a therapeutic 
intervention that involves a brain computer interface 
allowing to monitor and modulate real-time 
electroencephalographic (EEG) parameters is a 
method that has shown promising evidence in the 
treatment of diverse mood disorders (Abdian et al., 
2021; Batail et al., 2019; Chen & Lin, 2020; Ribas et 
al., 2018). Recently, NFB prospective studies have 
also explored the regulation of the infra-slow brain’s 
electrical signals (below 0.1 Hz). Previous studies 
have shown a regulation of autonomic nervous 
system (ANS) physiological measures suggesting 
that ISF NFB may influence brain networks involved 
with the ANS balance (Bekker et al., 2021; Leong et 
al., 2018; Perez et al., 2022). However, research on 
infra-slow fluctuations (ISF) NFB is still limited, and 
additional evidence is needed. The goal of the 
present study was to assess the adjuvant benefit of 
ISF NFB compared to group-based mindfulness for 
GAD in adults. The study was carried out with 22 
participants and the groups were randomly 
assigned. Therefore, the experimental group 
received ISF NFB plus mindfulness-based stress 
reduction (MBSR), whereas the control group 
received MBRS alone. GAD-7, a validated scale to 
assess the severity of GAD symptoms and qEEG, 
the quantitative and normative analysis of the EEG 
were administered before and after the treatment. 
Our results indicate that neurofeedback with MBRS 
has a statistically significant greater effect on the 
reduction of GAD symptomatology in adults 
compared with MBRS alone. Psychophysiological 
findings are still being analyzed.  
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We are teaching the computer how to “look at” an 
EEG and compare it with a large sample of others, 
to see how it compares. It is not “normative” in that it 
is compared with clinical samples, not “normals.” 
The purpose of our system is to prescreen EEGs 
that have not yet been inspected or artifacted, to 
determine how well they fit into a “typical” type of 
recording. This report can provide a heads-up of 
what to look for when proceeding to look at the EEG 
for purposes of clinical referral or to prepare the 
recording for qEEG analysis. This is therefore, a 
“pre-Q” or even a “pre-pre-Q.” 
 
It gives you a heads-up of what the EEG is like, if 
you had looked at hundreds of them and knew what 
to look for, including having seen plenty of abnormal 
EEGs. You would do this before a qEEG analysis, to 
have an idea of what you might see. And, yes, it 
uses independent components analysis (ICA) to 
remove eye artifact, and it uses methods that are 
human-instructed (by our team) machine learning, 

not entirely artificial intelligence, to know what to do. 
This is not AI. 
 
AI consists of methods where a computer attempts 
to learn to classify and respond to different 
information, by being presented with a vast amount 
of material, which it sorts through, and creates rules 
and so on. It may be guided or unguided, and can 
achieve remarkable capabilities (see, for example, 
the Score system1 which accurately detects and 
described important EEG features from preinspected 
EEG recordings). This is not qEEG. 
 
QEEG consists of processing EEG recordings to 
produce metrics useful in the interpretation of the 
frequencies and connectivity revealed in the EEG. 
QEEG requires that recordings be carefully 
inspected and artifacted, and that the age be noted 
when submitting the data to analysis. This is 
machine intelligence.  
 
We equip the computer with a program that is 
designed to use digital signal processing in order to 
simulate what a doctor does when they do a visual 
inspection of an EEG. We pick the rules and do not 
allow the machine to make decisions about which 
metrics or derived computations are used. We define 
a set of reasonably informed metrics motivated by 
the concepts of the posterior dominant rhythms, 
amplitude foci and magnitudes, time course of 
various metrics, and so on. We then present the 
program with a number of EEGs (currently in the 
hundreds) and allow it to compute the population 
statistics of the input samples. In this regard it is 
similar to qEEG. 
 
We do not select EEGs other than the fact that they 
were submitted and reported on by a board-certified 
clinical neurophysiologist/qEEG diplomate, in 
consultation with one or two board-certified qEEG 
diplomates. The purpose of the doctor’s report is to 
comment on the quality of the EEG submitted and 
make any relevant clinical observations regarding 
severe abnormalities or EEG quality problems. 
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Resting-State Electroencephalography 
Complexity is Associated With Oral Ketamine 
Treatment Response: A Bayesian Analysis of 
Lempel-Ziv Complexity and Multiscale Entropy 
Jules Mitchell 
University of the Sunshine Coast, Sunshine Coast, Queensland, 
Australia 
 
Subanesthetic doses of ketamine are a promising 
novel treatment for reducing symptoms of suicidality 
(Can et al., 2021; Ionescu et al., 2019; McIntyre et 
al., 2020); however, the evidence for prognostic 
biomarkers is sparse. Recently, measures of 
complexity, including Lempel-Ziv Complexity (LZC) 
and multiscale entropy (MSE), have been implicated 
in ketamine’s therapeutic action (Murphy et al., 
2023; Schartner et al., 2017). Moreover, these 
nonlinear indices of brain dynamics are associated 
with treatment response to both antidepressants and 
transcranial magnetic stimulation (Jaworska et al. 
2017; Lebiecka et al., 2018; Méndez et al., 2012). 
We evaluated electroencephalogram (EEG)-derived 
LZC and MSE differences between responders and 
nonresponders to oral ketamine treatment (Can et 
al., 2021), hypothesizing that treatment responders 
would have higher neural complexity at baseline 
compared to nonresponders and that this would be 
attenuated posttreatment. Additionally, we predicted 
elevated complexity in the eyes open compared to 
the eyes-open condition, as observed in previous 
studies (Lord & Allen, 2023; Yang et al., 2023). 
Thirty-one participants (mean age = 45.64, SD = 
13.95; 54% female) received six single, weekly 
(titrated) doses of oral racemic ketamine  
(0.5–3 mg/kg) and underwent EEG scans at 
baseline (week 0), posttreatment (week 6), and 
follow up (week 10). Resting-state (eyes closed and 
open) recordings were processed in EEGLAB, and 
complexity metrics were extracted using the 
Neurokit2 package. Participants were designated 
responders or nonresponders by clinical response 
(Beck suicide scale [BSS] score reduction of ≥ 50% 
from baseline to the respective timepoint or score  
≤ 6) and then compared in terms of complexity 
across task types and time. Employing a Bayesian 
mixed effects model with timepoint, task, and 
response status as fixed effects and by-participant 
random effects (random intercepts and slopes). As 
hypothesized, there was evidence for a main effect 
of task for LZC, with higher eyes-open compared to 
eyes-closed values across timepoints and response 
status. Similarly, higher MSE values were observed 
in the eyes-open condition for scales 1–4, with the 
opposite observed from scales 6–10. Averaged over 
channels (global level), responders displayed 
elevated eyes-open baseline complexity (LZC and 
MSE scales 1–4) compared to nonresponders, with 

these values decreased at posttreatment (6 weeks) 
and follow-up (10 weeks) in responders only. 
Exploratory Bayesian analyses revealed the 
elevated baseline eyes-open LZC in oral ketamine 
responders was not reflective of a global increase in 
entropy, rather it was spatially localized to the left 
frontal lobe (electrodes F1, AF3, FC1, and F3). This 
is the first evidence showing EEG-complexity 
metrics may be sensitive biomarkers for evaluating 
and predicting oral-ketamine treatment response 
and highlights the left prefrontal cortex as a key 
region implicated in response among individuals 
living with chronic suicidality and depression. 
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Alzheimer's disease (AD), a common neurological 
ailment, is characterized by a gradual decline of 
mental acuity resulting in dementia and adverse 
impact on an individual’s behavioral performance, 
making AD patients incapable of performing normal 
daily tasks and activities independently. Currently, 
AD has afflicted about 50 million individuals 
worldwide. This research explored binaural beat 
stimulation’s (BBS) potential for facilitating and 
enhancing AD patients’ behavioral and neurological 
aspects, which were validated through analysis of 
brain’s functional connections. There were 25 AD 
patients, who volunteered to participate in this study 
and receive 12 days of stimulation. These patients 
were divided into those who received BBS and 
others who received standard auditory stimulation 
(SAS). This study involved the employment of 
blessed dementia scale, Mini-Mental State 
Examination, and depression anxiety stress scale for 
a comprehensive behavioral analysis. The neural 
data was acquired through EEG. The neurological 
analysis was conducted by means of determining 
imaginary coherence, functional connectivity, and 
graph theory. The paired t-tests (p < .05) compared 
both groups’ pre- and posttreatment outcomes. 
Findings of this study revealed that significantly 
improved (p < .05) results in the BBS group were 
observed for all behavioral scales. Coincidentally, 
functional connectivity results exhibited striking 
changes in AD post-ICH in the theta, alpha, and 
gamma bands. Specifically, in the theta band there 
was considerable increase in strong inter- and 
intraregional connectivity with occipital, parietal, and 
temporal brain regions being dominant, indicating a 
strong positive effect of BB on AD patients’ working 

memory. Concurrently, the neurological analysis 
through graph theory also indicated a significant 
increase in cluster coefficient along with local 
efficiency in the theta and alpha band. These  
above-mentioned results of BBS group signify the 
efficacy of BB stimulation as a nonpharmacological 
intervention for the neurocognitive enhancement of 
individuals afflicted with AD, contributing to 
improvement in such patients’ overall health. 
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Introduction. Understanding the intricate 
relationship between self-perception and 
experience, as underscored by Freud's 
psychoanalytic theory and Skinner's behaviorism, is 
crucial in exploring how adverse childhood 
experiences profoundly influence the development 
of substance use disorders (SUD) and associated 
psychopathology as well as their patterns in the 
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human brain (Barch et al., 2018; Cannon et al., 
2008; Hawes & Allen, 2023; Lensch et al., 2021; 
Paulino et al., 2024).  
 
Methods. This observational data consists of 111 
individuals (40 female) with mean age 37.26,  
SD = 9.47. Participants completed initial screening 
and informed consent prior to neurofeedback 
training. Participants completed the self-perception 
and experiential schemata assessment (SPESA) 
and the personality assessment inventory (PAI; 
Morey, Lutz, FL) prior to LORETA neurofeedback 
procedures.  
 
Results. Significant inverse correlations were found 
on most scales of the PAI with the total score on the 
SPESA. The results suggest an important 
relationship between negative experiences and 
experiences of psychopathology. Certain patterns of 
experience are present in this population with 64.5% 
reporting at least one prior treatment for SUD; 
39.6% report a prior psychiatric diagnosis in 
childhood; 58.6% report violence was common in 
the home; 77.5% report alcohol and drugs were 
used in the home and 59.5% report abuse in the 
developmental periods. Linear regression results 
show the SPESA total score shows a predictive 
relationship: R2 = .64, adjusted R2 = .50, F(31, 79) = 
4.57, p = .000. The scales on the PAI identifying 
affective components of anxiety, traumatic stress, 
phobias, negative relationships, and antisocial 
behavior patterns were significant.  
 
Discussion. The basic neural mechanisms of 
patterning behaviors and perceptions of past 
experiences and their influences on social, 
executive, and emotional processes are paramount 
when working with clients in any population. 
Additionally, the neural mechanisms of self-
regulation are poorly understood; however, 
neurofeedback and neuromodulation data contribute 
to our understanding of these mechanisms and the 
potential to influence learning using neurofeedback 
or neuromodulation procedures (Downar et al., 
2024; Fielenbach et al., 2017; Gabrielsen et al., 
2022; Holland & Holbert, 2022). The data obtained 
in this study demonstrate significant correlations 
between the self, its experiences, and perceptions 
with psychological experiences in a heterogeneous 
population of inmates with substance use disorders. 
The importance of influencing currents and activity 
within the brain may represent the best potential 
toward integrative functioning relative to operant 
efficiency and improved self-regulatory mechanisms. 
 

References 
 
Barch, D. M., Belden, A. C., Tillman, R., Whalen, D., & Luby, J. L. 

(2018). Early childhood adverse experiences, inferior frontal 
gyrus connectivity, and the trajectory of externalizing 
psychopathology. Journal of the American Academy of Child 
& Adolescent Psychiatry, 57(3), 183–190. https://doi.org 
/10.1016/j.jaac.2017.12.011 

Cannon, R., Lubar, J., & Baldwin, D. (2008). Self-perception and 
experiential schemata in the addicted brain. Applied 
Psychophysiology and Biofeedback, 33(4), 223–238. 
https://doi.org/10.1007/s10484-008-9067-9 

Downar, J., Siddiqi, S. H., Mitra, A., Williams, N., & Liston, C. 
(2024). Mechanisms of Action of TMS in the treatment of 
depression. In B. A. Ellenbroek, T. R. E. Barnes, S. L. 
Andersen, M. P. Paulus, & J. Olivier (Eds.), Current topics in 
behavioral neurosciences (pp. 233–277). https://doi.org 
/10.1007/7854_2024_483 

Fielenbach, S., Donkers, F. C. L., Spreen, M., & Bogaerts, S. 
(2017). Neurofeedback as a treatment for impulsivity in a 
forensic psychiatric population with substance use disorder: 
study protocol of a randomized controlled trial combined with 
an n-of-1 clinical trial. JMIR Research Protocols, 6(1), Article 
e13. https://doi.org/10.2196/resprot.6907 

Gabrielsen, K. B., Clausen, T., Haugland, S. H., Hollup, S. A., & 
Vederhus, J.-K. (2022). Infralow neurofeedback in the 
treatment of substance use disorders: a randomized 
controlled trial. Journal of Psychiatry & Neuroscience, 47(3), 
E222-E229. https://doi.org/10.1503/jpn.210202 

Hawes, D. J., & Allen, J. L. (2023). A developmental 
psychopathology perspective on adverse childhood 
experiences (ACEs): Introduction to the special issue. 
Research on Child Adolescent Psychopathology, 51(12), 
1715–1723. https://doi.org/10.1007/s10802-023-01100-w 

Holland, E., & Holbert, R. (2022). Repetitive TMS for refractory 
depression in a patient with a seizure disorder. Brain 
Stimulation, 15(6), 1335–1336. https://doi.org/10.1016 
/j.brs.2022.10.002 

Lensch, T., Clements-Nolle, K., Oman, R. F., Evans, W. P., Lu, 
M., & Yang, W. (2021). Adverse childhood experiences and 
co-occurring psychological distress and substance abuse 
among juvenile offenders: The role of protective factors. 
Public Health, 194, 42–47. https://doi.org/10.1016 
/j.puhe.2021.02.014 

Paulino, M., Edens, J. F., Moniz, M., Moura, O., Rijo, D., & 
Simões, M. R. (2024). Personality assessment inventory 
(PAI) in forensic and correctional settings: A comprehensive 
review. Journal of Forensic and Legal Medicine, 103, Article 
102661. https://doi.org/10.1016/j.jflm.2024.102661 

 
 
ERP Neuromarkers of PTSD Associated With 
Hawaii Red Hill Toxic Jet Fuel Exposure 
Nicholas Whittredge 
Trace Neuroanalytics, Durham, North Carolina, USA 
 
The jet fuel leak from the Hawaii Red Hill 
Underground Fuel Storage Facility began in 
November 2021 and created an ongoing public 
health crisis impacting hundreds of thousands of 
O’ahu residents. The health effects of jet fuel 
exposure have been shown to impact many aspects 
of human physiology including immune, 
gastrointestinal, cardiovascular, integumentary, and 
nervous systems. Scalp resting-state 
electroencephalogram (rsEEG) and event-related 
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potentials (ERPs) have been shown to be useful in 
the assessment of brain functioning in the context of 
toxic encephalopathy, epilepsy, anxiety, depression, 
OCD, ADD/ADHD, and posttraumatic stress disorder 
(PTSD). In this case series, rsEEG and ERP data of 
31 subjects with self-reported cognitive and/or 
neurological changes following HRH were analyzed. 
Subjects completed at least 10 min of eyes open, 10 
min of eyes closed, and 22 min of task EEG 
recording using a standardized cued Go-NoGo 
visual continuous performance task (VCPT) from the 
HBImed methodology for calculation of ERPs. 
Slowed alpha, unstable vigilance, focal and 
generalized slowing, and excessive beta activity 
were noted in the rsEEG across various symptom 
presentations. ERP group analysis of a subset of 
subjects (N = 18) constrained by age (18–50 years) 
showed two statistically significant (p < .01) 
differences when compared to a database of healthy 
controls (N = 200). The action suppression ERP 
component is generated in the supplementary motor 
cortex to inhibit a prepared action and was reduced 
in amplitude in the study group. The visual P1/N1/P2 
ERP component complex is generated in the 
primary and secondary visual areas and reflects the 
process of visual object categorization and is 
modulated by the activation of the amygdala via the 
thalamus. This component was reduced in latency 
and increased in amplitude in the study group. 
Group comparisons were conducted by joint 
diagonalization of covariance matrices. These 
findings are consistent with the diagnosis of PTSD. 
Limitations of this study including subject sample 
bias are discussed. Possible reasons for PTSD 
diagnosis are discussed, including lack of medical 
care access, institutional disregard, displacement, 
loss of life, denial of care, and fear of retaliation. 
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on Event-Related Potentials and Cognitive 
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Johanna Rodriguez-Beato1, Noely Ramos-Vega1, and 
Ismael Castillo2 
1Ponce Health Science University, Ponce, Puerto Rico, USA 
2University of Puerto Rico, Rio Piedras Campus, San Juan, 
Puerto Rico, USA 
 
A concussion can induce brain electrical activity 
alterations, detectable as anomalies on an 
electroencephalogram (EEG). These alterations 
typically signify disruptions in the brain's normal 
communication pathways, impacting various 
cognitive functions. Consequently, individuals may 
experience impairments in attention, memory, and 
executive functions. Additionally, behavioral 
manifestations of concussions often include 
increased irritability, fatigue, and difficulties in 
academic or social interactions. 
 
The use of standardized low-resolution 
electromagnetic tomography analysis z-score 
neurofeedback (sLZNFB) represents a promising 
approach for targeting network disruptions in deep 
cortical regions. This study aimed to investigate the 
effects of sLZNFB on brain electrophysiology and 
cognitive performance in a 7-year-old girl who 
suffered from a moderate Grade II concussion while 
riding her bicycle without a helmet at the age of 6. 
The patient exhibited deficits in attention, processing 
speed, and memory. 
 
The study used a pre-experimental design with  
pre–post comparison. To this end, LZNFB was 
applied to affected brain areas for 20 sessions. 
Baseline and posttreatment measurements were 
made on qEEG metrics, whole-brain event-related 
potentials (oddball and visual paradigms), attention, 
memory, executive function, reaction time, and 
cognitive flexibility. Clinical improvements were 
found in variables related to processing speed after 
16 sessions of sLZNFB on computerized tasks. 
Significant changes in the eyes-closed resting-state 
z-score maps were found in lateral/central Delta 
frequency and connectivity variables in all 
frequencies in the eye-closed condition. An 
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increased inhibition of the Alpha Mu rhythm in the 
eyes-open condition was also observed. Event-
related potentials on oddball auditory and visual 
tasks showed greater organization, significant 
changes in early components (N1 and N2), and less 
P300 latency. In addition, parents reported 
significant improvements in mood and reading 
throughout the sessions. 
 
These findings suggest the potential effectiveness of 
LZNFB on cognitive performance improvement 
among pediatric concussion patients. Further 
studies with a larger number of patients and control 
groups may be required to evaluate the full potential 
of this type of training in concussion patients. 
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