Proceedings of the 2024 ISNR Annual Conference: Keynote and Plenary Presentations
DOI:
https://doi.org/10.15540/nr.11.4.394Keywords:
Neurofeedback, ISNR Annual Conference, qEEG, conference abstractsAbstract
Selected Abstracts of Conference Keynote and Plenary Presentations at the 2024 International Society for Neuroregulation and Research (ISNR) 32nd Annual Conference, Chicago, Illinois, USA
References
References for Proceedings of the 2024 ISNR Annual Conference: Keynote and Plenary Presentations
---Attachment Shock: Brainstem Reactivity in Developmental Trauma Implications for Neurofeedback and Psychotherapy
Corrigan, F. M., & Christie-Sands, J. (2020). An innate brainstem self-other system involving orienting, affective responding, and polyvalent relational seeking: Some clinical implications for a "deep brain reorienting" trauma psychotherapy approach. Medical Hypotheses, 136, Article 109502. https://doi.org/10.1016/j.mehy.2019.109502
Fisher, S. F. (2014) Neurofeedback in the treatment of developmental trauma: Calming the fear-driven brain. Norton Professional Books.
Kearney, B. E., Corrigan, F. M., Frewen, P. A., Nevill, S., Harricharan, S., Andrews, K., Jetly, R., McKinnon, M. C., & Lanius, R. A. (2023). A randomized controlled trial of deep brain reorienting: A neuroscientifically guided treatment for post-traumatic stress disorder. European Journal of Psychotraumatology, 14(2), Article 2240691. https://doi.org/10.1080/20008066.2023.2240691
Nicholson, A. A., Ros, T., Jetly, R., & Lanius, R. A. (2020). Regulating posttraumatic stress disorder symptoms with neurofeedback: Regaining control of the mind. Journal of Military, Veteran and Family Health, 6(S1), 3–15. https://doi.org/10.3138/jmvfh.2019-0032
---Affectivism, Components of Emotion, and the Emotional Brain
Adolphs, R., & Anderson, D. J. (2018). The neuroscience of emotion: A new synthesis. Princeton University Press.
Brosch, T., & Sander, D. (2013). The appraising brain: Towards a neuro-cognitive model of appraisal processes in emotion. Emotion Review, 5(2), 163–168. https://doi.org/10.1177/1754073912468298
Dukes, D., Abrams, K., Adolphs, R., Ahmed, M. E., Beatty, A., Berridge, K. C., Broomhall, S., Brosch, T., Campos, J. J., Clay, Z., Clément, F., Cunningham, W., Damasio, A., Damasio, H., D'Arms, J., Davidson, J., de Gelder, B., Deonna, J., de Sousa, R., … Sander, D. (2021). The rise of affectivism. Nature Human Behaviour, 5, 816–820. https://doi.org/10.1038/s41562-021-01130-8
Hamann S. (2024). An overview of contemporary theories of emotions in neuroscience. In A. Scarantino (Ed.), Emotion theory: The routledge comprehensive guide. Routledge.
Kragel, P. A., Sander, D., & LaBar, K. S. (2024). How can brain data be used to arbitrate among emotion theories? In A. Scarantino (Ed.), Emotion theory: The routledge comprehensive guide. Routledge.
Mohammadi, G., Van De Ville, D., & Vuilleumier, P. (2023). Brain networks subserving functional core processes of emotions identified with componential modeling. Cerebral Cortex, 33(12), 7993–8010. https://doi.org/10.1093/cercor/bhad093
Moors, A. (2022). Demystifying emotions. A typology of theories in psychology and philosophy. Cambridge University Press.
Murray, R. J., Kutlikova, H. H., Brosch, T., & Sander, D. (2023). The amygdala and appraised concern-relevance: Initial evidence that intrinsic motivation modulates amygdala response to otherwise neutral stimuli. Motivation Science, 9(2), 95–106. https://doi.org/10.1037/mot0000293
Pool, E. R., Brosch, T., Delplanque, S., & Sander, D. (2016). Attentional bias for positive emotional stimuli: A meta-analytic investigation. Psychological Bulletin, 142(1), 79–106. https://doi.org/10.1037/bul0000026
Sander, D., Grandjean, D., & Scherer, K. R. (2018). An appraisal-driven componential approach to the emotional brain. Emotion Review, 10(3), 219–231. https://doi.org/10.1177/1754073918765653
Sander, D. (2013). Models of emotion: The affective neuroscience approach. In J. Armony & P. Vuilleumier (Eds.), The Cambridge handbook of human affective neuroscience (pp. 5–53). Cambridge University Press. https://doi.org/10.1017/CBO9780511843716.003
---Towards a Road Map for Optimizing Neurofeedback Training Based on Research and Cognitive Neuroscience
Davelaar E. J. (2018). Mechanisms of neurofeedback: A computation-theoretic approach. Neuroscience, 378, 175–188. https://doi.org/10.1016/j.neuroscience.2017.05.052
Lubianiker, N., Paret, C., Dayan, P., & Hendler, T. (2022). Neurofeedback through the lens of reinforcement learning. Trends in Neurosciences, 45(8), 579–593. https://doi.org/10.1016/j.tins.2022.03.008
Ros, T., Enriquez-Geppert, S., Zotev, V., Young, K. D., Wood, G., Whitfield-Gabrieli, S., Wan, F., Vuilleumier, P., Vialatte, F., Van De Ville, D., Todder, D., Surmeli, T., Sulzer, J. S., Strehl, U., Sterman, M. B., Steiner, N. J., Sorger, B., Soekadar, S. R., Sitaram, R., … Thibault, R. T. (2020). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain, 143(6), 1674–1685. https://doi.org/10.1093/brain/awaa009
Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy, 15(4), 292–304. https://doi.org/10.1080/10874208.2011.623089
---Clinical Implications of the Bayesian Brain, the Autonomic Nervous System, and the Triple Network
Balt, K., Du Toit, P., Smith, M. L., & van Rensburg, C. (2020). The effect of infraslow frequency neurofeedback on autonomic nervous system function in adults with anxiety and related diseases. NeuroRegulation, 7(2), 64–74. https://doi.org/10.15540/nr.7.2.64
Beissner, F., Meissner, K., Bär, K.-J., & Napadow, V. (2013). The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function. The Journal of Neuroscience, 33(25), 10503–10511. https://doi.org/10.1523/jneurosci.1103-13.2013
De Ridder, D., Smith, M. L., & Adhia, D. (2023). Chapter 4 - Autonomic nervous system and the triple network: An evolutionary perspective with clinical implications. In D. R. Chartier, M. B. Dellinger, J. R. Evans, & H. K. Budzynski (Eds.), Introduction to quantitative EEG and neurofeedback (3rd ed., pp. 63–77). Academic Press.
De Ridder, D., Vanneste, S., Smith, M., & Adhia, D. (2022). Pain and the triple network model. Frontiers in Neurology, 13, Article 757241. https://doi.org/10.3389/fneur.2022.757241
Leong, S. L., Vanneste, S., Lim, J., Smith, M., Manning, P., & De Ridder, D. (2018). A randomised, double-blind, placebo-controlled parallel trial of closed-loop infraslow brain training in food addiction. Scientific Reports, 8(1), Article 11659. https://doi.org/10.1038/s41598-018-30181-7
Mathew, J., Adhia, D. B., Smith, M. L., De Ridder, D., & Mani, R. (2022). Source localized infraslow neurofeedback training in people with chronic painful knee osteoarthritis: A randomized, double-blind, sham-controlled feasibility clinical trial. Frontiers in Neuroscience, 16, Article 899772. https://doi.org/10.3389/fnins.2022.899772
Menon, B. (2019). Towards a new model of understanding – The triple network, psychopathology and the structure of the mind. Medical Hypotheses, 133, Article 109385. https://doi.org/10.1016/j.mehy.2019.109385
---See Your Brain, Train Your Mind, Change Your LIFE!
Bonnstetter, B. J., Bonnstetter, R. J., Hebets, D., & Collura, T. F. (2015). U.S. Patent No. 9,060,702. Washington, DC: U.S. Patent and Trademark Office.
Bonnstetter, B. J., Bonnstetter, R. J., Hebets, D., & Collura, T. F. (2016). Target Training International, Ltd. Validation Process for Ipsative Assessments. Canadian Patent No. 2,808,691. Gatineau, Quebec, Canada: Canadian Intellectual Property Office, Patent Branch.
Bonnstetter, R. J., & Collura, T. F. (2020). Brain activation imaging in emotional decision making and mental health: A review — Part 1. Clinical EEG and Neuroscience, 52(2), 98–104. https://doi.org/10.1177/1550059420916636
Bonnstetter, R. J., Collura, T. F., Zalaquett, C., & Wang, H.-H. (2023). Electroencephalography microstates in relation to emotional decision-making. In D. R. Chartier, M. B. Dellinger, J. R. Evans, & H. K. Budzynski (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced applications (3rd ed., pp. 3–15). Elsevier Academic Press. https://doi.org/10.1016/B978-0-323-89827-0.00009-7
Bonnstetter, R. J., Gehrig, E., & Hebets, D. (2018). Response process validation protocol using neurophenomenological gamma asymmetry. NeuroRegulation, 5(3), 93–102. https://doi.org/10.15540/nr.5.3.93
Bonnstetter, R. J., Hebets, D., & Wigton, N. L. (2015). Frontal gamma asymmetry in response to soft skills stimuli: A pilot study. NeuroRegulation, 2(2), 70–85. https://doi.org/10.15540/nr.2.2.70
Collura, T. F., & Bonnstetter, R. J. (2021). Brain activation imaging in emotional decision making and mental health: A review — Part 2. Clinical EEG and Neuroscience, 52(2), 105–113. https://doi.org/10.1177/1550059420916642
Collura, T. F., Wigton, N. L., Zalaquett, C., Chatters-Smith, S., & Bonnstetter, R. J. (2016). The value of EEG-based electromagnetic tomographic analysis in human performance and mental health. Biofeedback, 44(2), 58–65. https://doi.org/10.5298/1081-5937-44.2.03
Gosselin, D. (2023). Introduction to crossdisciplinary collaboration: Definitions, systems, and the brain. In D. Gosselin (Ed.), A practical guide for developing collaboration. AESS Interdisciplinary Environmental Studies and Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-031-37220-9_1
---Optimizing Photobiomodulation for Brain Health: Latest Advances in Parameter Settings
Dole, M., Auboiroux, V., Langar, L., & Mitrofanis, J. (2023). A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. Reviews in the Neurosciences, 34(6), 671–693. https://doi.org/10.1515/revneuro-2023-0003
Fear, E. J., Torkelsen, F. H., Zamboni, E., Chen, K.-J., Scott, M., Jeffery, G., Baseler, H., & Kennerley, A. J. (2023). Use of 31P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell, 22(11), Article e14005. https://doi.org/10.1111/acel.14005
Lim, L. (2023). Photobiomodulation effects on cancer cells through modifications of their bioelectric properties: Comment on "The distinguishing electrical properties of cancer cells" by E. di Gregorio, S. Israel, M. Staelens, et al. Physics of Life Reviews, 46, 283–285. https://doi.org/10.1016/j.plrev.2023.08.008
Moro, C., Valverde, A., Dole, M., Hoh Kam, J., Hamilton, C., Liebert, A., Bicknell, B., Benabid, A. L., Magistretti, P., & Mitrofanis, J. (2022). The effect of photobiomodulation on the brain during wakefulness and sleep. Frontiers in Neuroscience, 16, Article 942536. https://doi.org/10.3389/fnins.2022.942536
Shetty, S. J., Shetty, S., Shettigar, D., Pagilla, V., & Maiya, G. A. (2023). Effect of transcranial photobiomodulation on electrophysiological activity of brain in healthy individuals: A scoping review. Journal of Clinical Neuroscience, 117, 156–167. https://doi.org/10.1016/j.jocn.2023.09.029
Staelens, M., Di Gregorio, E., Kalra, A. P., Le, H. T., Hosseinkhah, N., Karimpoor, M., Lim, L., & Tuszyński, J. A. (2022). Near-infrared photobiomodulation of living cells, tubulin, and microtubules in vitro. Frontiers in Medical Technology, 4, Article 871196. https://doi.org/10.3389/fmedt.2022.871196
Tunér, J., & Jenkins, P. A. (2016). Parameter Reproducibility in Photobiomodulation. Photomedicine and Laser Surgery, 34(3), 91–92. https://doi.org/10.1089/pho.2016.4105
Yuan, Y., Cassano, P., Pias, M., & Fang, Q. (2020). Transcranial photobiomodulation with near-infrared light from childhood to elderliness: Simulation of dosimetry. Neurophotonics, 7(1), Article 015009. https://doi.org/10.1117/1.NPh.7.1.015009
---EEG and the Search for the Buried Message: Application of Homomorphic Deconvolution, ICA, sLORETA, and Machine Learning
Bonnstetter, R. J., & Collura, T. F. (2020). Brain activation imaging in emotional decision making and mental health: A review — Part 1. Clinical EEG and Neuroscience, 52(2), 98–104. https://doi.org/10.1177/1550059420916636
Collura, T. F., & Bonnstetter, R. J., (2021). Brain activation imaging in emotional decision making and mental health: A review — Part 2. Clinical EEG and Neuroscience, 52(2), 105–113. https://doi.org/10.1177/1550059420916642
Collura, T. F., & Tarrant, J. (2020) Principles and statistics of individualized live and static z-scores. NeuroRegulation, 7(1), 45–56. https://doi.org/10.15540/nr.7.1.45
Mahajan, R., & Morshed, B. I. (2014). Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA. IEEE Journal of Biomedical and Health Informatics, 19(1), 158–165. https://doi.org/10.1109/jbhi.2014.2333010
Rejer, I., & Gorski, P. (2015). Benefits of ICA in the case of a few channel EEG. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7434–7437. Milan, Italy. https://doi.org/10.1109/EMBC.2015.7320110
---App-Based Combined HRV and Frequency Harmonics Training: Quieting Through Both the Central and Autonomic Nervous System(s). Clinical Trial Results
Brodal, P. (2010). The central nervous system: Structure and function (4th ed.). Oxford University Press.
Moss, D., & Shaffer, F. (2016). Foundations of heart rate variability biofeedback: A book of readings. Association for Applied Psychophysiology and Biofeedback.
Swingle, P. (1992). Subliminal treatment procedures: A clinician’s guide. Professional Resource Press.
---Habit Formation and Automaticity: Psychoneurobiological Correlates of Gamma Activity
Kohn, R., Saxena, S., Levav, I., & Saraceno, B. (2004). The treatment gap in mental health care. Bulletin of the World Health Organization, 82(11), 858–866.
Leaf, C. M., Turner, R. P., Wasserman, C. S., Paulson, R. M., Kopooshian, N., Lynch, G. Z., & Leaf, A. (2023). Psycho-neuro-biological correlates of beta Activity. NeuroRegulation, 10(1), 11–20. https://doi.org/10.15540/nr.10.1.11
Madhavan, R., Millman, D., Tang, H., Crone, N. E., Lenz, F. A., Tierney, T. S., Madsen, J. R., Kreiman, G. & Anderson, W. S. (2015). Decrease in gamma-band activity tracks sequence learning. Frontiers in Systems Neuroscience, 8, Article 222. https://doi.org/10.3389/fnsys.2014.00222
Patel, V., Goel, D. S., & Desai, R. (2009). Scaling up services for mental and neurological disorders in low-resource settings. International Health, 1(1), 37–44. https://doi.org/10.1016/j.inhe.2009.02.002
Singh, V., Kumar, A., & Gupta, S. (2022). Mental health prevention and promotion—A narrative review. Frontiers in Psychiatry, 13, Article 898009. https://doi.org/10.3389/fpsyt.2022.898009
---EEG in Depth: Seeing Psyche in Brainwaves
Berlin, H. A. (2021). The neural basis of the dynamic unconscious. Neuropsychoanalysis, 13(1), 5–31. https://doi.org/10.1080/15294145.2011.10773654
Bland, B. H., & Oddie, S. D. (2021). Theta band oscillation and synchrony in the hippocampal formation and associated structures: The case for its role in sensorimotor integration. Behavioural Brain Research, 127(1–2), 119–136. https://doi.org/10.1016/s0166-4328(01)00358-8
Buchheim, A., Kernberg, O. F., Netzer, N., Buchheim, P., Perchtold-Stefan, C., Sperner-Unterweger, B., Beckenbauer, F., & Labek, K. (2023). Differential neural response to psychoanalytic intervention techniques during structural interviewing: A single-case analysis using EEG. Frontiers in Human Neuroscience, 16, Article 1054518. https://doi.org/10.3389/fnhum.2022.1054518
Buzsáki, G. (2016). Rhythms of the brain. Oxford University Press.
Cozolino, L. (2012). The neuroscience of psychotherapy: Building and rebuilding the human brain. Norton.
Fischmann, T., Russ, M., Schoett, M., & Leuzinger-Bohleber, M. (2017). Trauma, dreams and transformations in psychoanalysis: Combining clinical and extra-clinical research in an EEG/fMRI study. In M. Leuzinger-Bohleber, S. Arnold, & M. Solms (Eds.), The unconscious: A bridge between psychoanalysis and cognitive neuroscience (pp. 165–188). Routledge/Taylor & Francis Group.
Hobson, A. (2014). Psychodynamic neurology: Dreams, consciousness, and virtual reality. CRC Press.
Panksepp, J. (2018). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.
Rizzolatti, G., Semi, A. A., & Fabbri-Destro, M. (2013). Linking psychoanalysis with neuroscience: The concept of ego. Neuropsychologia, 55(1), 143–148. https://doi.org/10.1016/j.neuropsychologia.2013.10.003
Seung, S. (2012). Connectome: How the brain’s wiring makes us who we are. Mariner Books.
Solms, M., & Turnbull, O. (2002). The brain and the inner world: An introduction to the neuroscience of subjective experience. Other Press.
Thompson, T. (2023). Electroencephalography in depth: Seeing psyche in brainwaves. In D. R. Chartier, M. B. Dellinger, J. R. Evans, & H. K. Budzynski (Eds.), Introduction to quantitative EEG and neurofeedback (3rd ed., pp. 161–176). Academic Press. https://doi.org/10.1016/B978-0-323-89827-0.00020-6
Ulrich, G. (2013). The theoretical interpretation of electroencephalography. BMED Press.
van der Kolk, B. A. (2014). The body keeps the score: Memory and the evolving psychobiology of traumatic stress. Harvard Review of Psychiatry, 1(5), 253–265. https://doi.org/10.3109/10673229409017088
---Can Mind-Matter Interactions Be Influenced by Low Power PEMF and Heart Rate Variability?: A Pilot Study
Dobyns, Y. (2015). The PEAR laboratory: Explorations and observations. In D. Broderick & B. Goertzel (Eds.), Evidence for psi: Thirteen empirical research reports (pp. 213–236). McFarland.
Freedman, M., Binns, M., Gao, F., Holmes, M., Roseborough, A., Strother, S., Vallesi, A., Jeffers, S., Alain, C., Whitehouse, P., Ryan, J. D., Chen, R., Cusimano, M. D., & Black, S. E. (2018). Mind-matter interactions and the frontal lobes of the brain: A novel neurobiological model of psi inhibition. EXPLORE, 14(2), 76–85. https://doi.org/10.1016/j.explore.2017.08.003
Freedman, M., Binns, M. A., Meltzer, J. A., Hashimi, R., & Chen, R. (2024). Enhanced mind-matter interactions following rTMS induced frontal lobe inhibition. Cortex, 172, 222–233. https://doi.org/10.1016/j.cortex.2023.10.016
Freedman, M., Jeffers, S., Saeger, K., Binns, M., & Black, S. (2003). Effects of frontal lobe lesions on intentionality and random physical phenomena. Journal of Scientific Exploration, 17(4), 651–668.
Jahn, R. G., & Dunne, B. J. (2011). Consciousness and the source of reality: The PEAR odyssey. ICRL Press.
Varvoglis, M., & Bancel, P. A. (2015). Micro-psychokinesis. In E. Cardeña, J. Palmer, & D. Marcusson-Clavertz (Eds.), Parapsychology: A handbook for the 21st century (pp. 266–281). McFarland & Co.
Varvoglis, M. P., & McCarthy, D. (1986). Conscious-purposive focus and PK: RNG activity in relation to awareness, task-orientation, and feedback. Journal of the American Society for Psychical Research, 80(1), 1–29.
Williams, B. J. (2021). Minding the matter of psychokinesis: A review of proof-and process-oriented experimental findings related to mental influence on random number generators. Journal of Scientific Exploration, 35(4), 829–932. https://doi.org/10.31275/20212359
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Society of Neuroregulation and Research (ISNR)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).