Proceedings of the 2024 ISNR Annual Conference: Poster Presentations

Authors

  • International Society of Neuroregulation and Research (ISNR)

DOI:

https://doi.org/10.15540/nr.11.4.404

Keywords:

ISNR, Conference abstracts, qEEG, Neurofeedback, ISNR Annual Conference

Abstract

Selected Abstracts of Conference Poster Presentations at the 2024 International Society for Neuroregulation and Research (ISNR) 32nd Annual Conference, Chicago, Illinois, USA

References

References for Proceedings of the 2024 ISNR Annual Conference: Poster Presentations

---Preliminary Evidence for Efficacy of 4-Channel Live Z-Score Neurofeedback Training Among Individuals With Posttraumatic Stress Disorder

Brunello, N., Davidson, J. R., Deahl, M., Kessler, R. C., Mendlewicz, J., Racagni, G., Shalev, A. Y., & Zohar, J. (2001). Posttraumatic stress disorder: Diagnosis and epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology, 43(3), 150–162. https://doi.org/10.1159/000054884

Kessler, R. C., Aguilar-Gaxiola, S., Alonso, J., Benjet, C., Bromet, E. J., Cardoso, G., Degenhardt, L., de Girolamo G., Dinolova, R. V., Ferry, F., Florescu, S., Gureje, O., Haro, J. M., Huang, Y., Karam, E. G., Kawakami, N., Lee, S., Lepine, J.-P., Levinson, D., … Koenen, K. C. (2017). Trauma and PTSD in the WHO world mental health surveys. European Journal of Psychotraumatology, 8(Suppl 5), Article 1353383. https://doi.org/10.1080/20008198.2017.1353383

Peniston, E. G., & Kulkosky, P. J. (1991). Alpha-theta brainwave neuro-feedback for Vietnam veterans with combat-related post-traumatic stress disorder. Medical Psychotherapy, 4(1), 47–60.

Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., Baker, R., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 22–33.

Thatcher, R. W. (2013). Latest developments in live z-score training: Symptom check list, phase reset, and LORETA z-score biofeedback. Journal of Neurotherapy, 17(1), 69–87. https://doi.org/10.1080/10874208.2013.759032

van der Kolk, B. A., Hodgdon, H., Gapen, M., Musicaro, R., Suvak, M. K., Hamlin, E., & Spinazzola, J. (2016). A randomized controlled study of neurofeedback for chronic PTSD. PLoS ONE, 11(12), Article e0166752. https://doi.org/10.1371/journal.pone.0166752

---The Depression Network: A Neuroimaging Case Study of Acute Stimulation

Alexander, L., Clarke, H. F., & Roberts, A. C. (2019). A focus on the functions of area 25. Brain Sciences, 9(6), Article 129. https://doi.org/10.3390/brainsci9060129

Alves, P. N., Foulon, C., Karolis, V., Bzdok, D., Margulies, D. S., Volle, E., & Thiebaut de Schotten, M. (2019). An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Communications Biology, 2, Article 370. https://doi.org/10.1038/s42003-019-0611-3

Calm. (2016). Daily calm | 10 minute mindfulness meditation | be present [Video]. YouTube. https://www.youtube.com/watch?v=ZToicYcHIOU

Drobisz, D., & Damborská, A. (2019). Deep brain stimulation targets for treating depression. Behavioural Brain Research, 359, 266–273. https://doi.org/10.1016/j.bbr.2018.11.004

Feiner, T. (n.d.). Brodmann area 32 | IFEN. Neurofeedback-Academy.com. Retrieved November 2, 2023. https://neurofeedback-academy.com/brodmann-area/32

Fitzgerald, P. B. (2021). Targeting repetitive transcranial magnetic stimulation in depression: Do we really know what we are stimulating and how best to do it? Brain Stimulation, 14(3), 730–736. https://doi.org/10.1016/j.brs.2021.04.018

Gong, Q., & He, Y. (2015). Depression, neuroimaging and connectomics: A selective overview. Biological Psychiatry, 77(3), 223–235. https://doi.org/10.1016/j.biopsych.2014.08.009

Gudayol-Ferré, E., Peró-Cebollero, M., González-Garrido, A. A., & Guàrdia-Olmos, J. (2015). Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review. Frontiers in Human Neuroscience, 9, Article 582. https://doi.org/10.3389/fnhum.2015.00582

---The Human Pain Network: A Neuroimaging Case Study of Acute Stimulation

De Ridder, D., Vanneste, S., Smith, M., & Adhia, D. (2022). Pain and the triple network model. Frontiers in Neurology, 13, Article 757241. https://doi.org/10.3389/fneur.2022.757241

Ikeda, R., Takahashi, Y., Inoue, K., & Kato, F. (2007). NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain, 127(1), 161–172. https://doi.org/10.1016/j.pain.2006.09.003

Le Pera, D., Svensson, P., Valeriani, M., Watanabe, I., Arendt-Nielsen, L., & Chen, A. C. N. (2000). Long-lasting effect evoked by tonic muscle pain on parietal EEG activity in humans. Clinical Neurophysiology, 111(12), 2130–2137. https://doi.org/10.1016/S1388-2457(00)00474-0

Neugebauer, V. (2007). The amygdala: Different pains, different mechanisms. Pain, 127(1), 1–2. https://doi.org/10.1016/j.pain.2006.10.004

Ong, W.-Y., Stohler, C. S., & Herr, D. R. (2018). Role of the prefrontal cortex in pain processing. Molecular Neurobiology, 56(2), 1137–1166. https://doi.org/10.1007/s12035-018-1130-9

Sofat, N., Hermansson, M., Howard, M., Baker, E. H., Howe, F. A., & Barrick, T. R. (2013). Functional MRI demonstrates pain perception in hand osteoarthritis has features of central pain processing. Journal of Biomedical Graphics and Computing, 3(4), 20–26. https://doi.org/10.5430/jbgc.v3n4p20

Ta Dinh, S., Nickel, M. M., Tiemann, L., May, E. S., Heitmann, H., Hohn, V. D., Edenharter, G., Utpadel-Fischler, D., Tölle, T. R., Sauseng, P., Gross, J., & Ploner, M. (2019). Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain, 160(12), 2751–2765. https://doi.org/10.1097/j.pain.0000000000001666

Tesic, I., Pigoni, A., Moltrasio, C., Brambilla, P., & Delvecchio, G. (2023). How does feeling pain look like in depression: A review of functional neuroimaging studies. Journal of Affective Disorders, 339, 400–411. https://doi.org/10.1016/j.jad.2023.07.083

Thatcher, R. W. (2012). Handbook of quantitative electroencephalography and EEG biofeedback (3rd ed.). Anipublishing Co.

Veinante, P., Yalcin, I., & Barrot, M. (2013). The amygdala between sensation and affect: A role in pain. Journal of Molecular Psychiatry, 1(1), Article 9. https://doi.org/10.1186/2049-9256-1-9

---The Effectiveness of Neurofeedback for Refugees and Asylum Seekers With Trauma Symptoms: A Pilot Study

Askovic, M., Watters, A. J., Coello, M., Aroche, J., Harris, A. W. F., & Kropotov, J. (2020). Evaluation of neurofeedback for posttraumatic stress disorder related to refugee experiences using self-report and cognitive ERP measures. Clinical EEG and Neuroscience, 51(2), 79–86. https://doi.org/10.1177/1550059419849170

Blackmore, R., Boyle, J. A., Fazel, M., Ranasinha, S., Gray, K. M., Fitzgerald, G., Misso, M., & Gibson-Helm, M. (2020). The prevalence of mental illness in refugees and asylum seekers: A systematic review and meta-analysis. PLoS Medicine, 17(9), Article e1003337. https://doi.org/10.1371/journal.pmed.1003337

Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143–158. https://doi.org/10.15412/J.BCN.03070208

Micoulaud-Franchi, J. A., Jeunet, C., Pelissolo, A., & Ros, T. (2021). EEG neurofeedback for anxiety disorders and post-traumatic stress disorders: A blueprint for a promising brain-based therapy. Current Psychiatry Reports, 23(12), Article 84. https://doi.org/10.1007/s11920-021-01299-9

Russo, G. M., Balkin, R. S., & Lenz, A. S. (2022). A meta‐analysis of neurofeedback for treating anxiety‐spectrum disorders. Journal of Counseling & Development, 100(3), 236–251. https://doi.org/10.1002/jcad.12424

---Effects of Interactive Brain Neurotherapy Based on fMRI-EEG-Neurofeedback on Structural Connectivity of Motor Cortex Networks in Stroke Patients

Bezmaternykh, D. D., Kalgin, K. V., Maximova, P. E., Mel'nikov, M. Y., Petrovskii, E. D., Predtechenskaya, E. V., Savelov, A. A., Semenikhina, A. A., Tsaplina, T. N., Shtark, M. B., & Shurunova, A. V. (2021). Application of fMRI and simultaneous fMRI-EEG neurofeedback in post-stroke motor rehabilitation. Bulletin of Experimental Biology and Medicine, 171(3), 379–383. https://doi.org/10.1007/s10517-021-05232-1

Khruscheva, N. A., Mel’nikov, M. Y., Bezmaternykh, D. D., Savelov, A. A., Kalgin, K. V., Petrovsky, Y. D., Shurunova, A. V., Shtark, M. B., & Sokhadze, E. M. (2022). Interactive brain stimulation neurotherapy based on BOLD signal in stroke rehabilitation. NeuroRegulation, 9(3), 147–163. https://doi.org/10.15540/nr.9.3.147

Lioi, G., Butet, S., Fleury, M., Bannier, E., Lécuyer, A., Bonan, I., & Barillot, C. (2020). A multi-target motor imagery training using bimodal EEG-fMRI neurofeedback: A pilot study in chronic stroke patients. Frontiers in Human Neuroscience, 14, Article 37. https://doi.org/10.3389/fnhum.2020.00037

Lioi, G., Fleury, M., Butet, S., Lécuyer, A., Barillot, C., & Bonan, I. (2018). Bimodal EEG-fMRI neurofeedback for stroke rehabilitation: A case report. Annals of Physical and Rehabilitation Medicine, 61(Suppl), e482–e483. https://doi.org/10.1016/j.rehab.2018.05.1127

Rudnev, V., Melnikov, M., Savelov, A., Shtark, M., & Sokhadze, E. (2021). fMRI-EEGfingerprint regression model for motor cortex. NeuroRegulation, 8(3), 162–172. https://doi.org/10.15540/nr.8.3.162

Savelov, A. A., Shtark, M. B., Kozlova, L. I., Verevkin, E. G., Petrovskii, E. D., Pokrovskii, M. A., Rudych, P. D., & Tsyrkin, G. M. (2019). Dynamics of interactions between cerebral networks derived from fMRI data and motor rehabilitation during stokes. Bulletin of Experimental Biology and Medicine, 166(3), 399–403. https://doi.org/10.1007/s10517-019-04359-6

---Single-Case Research Design: Exploring PTSD Protocols for Neurofeedback at a University Clinic

Ganz, J. B., & Ayres, K. M. (2018). Methodological standards in single-case experimental design: Raising the bar. Research in Developmental Disabilities, 79, 3–9. https://doi.org/10.1016/j.ridd.2018.03.003

Gapen, M., van der Kolk, B. A., Hamlin, E., Hirshberg, L., Suvak, M., & Spinazzola, J. (2016). A pilot study of neurofeedback for chronic PTSD. Applied Psychophysiology and Biofeedback, 41(3), 251–261. https://doi.org/10.1007/s10484-015-9326-5

Kazdin, A. E. (2021). Single‐case experimental designs: Characteristics, changes, and challenges. Journal of the Experimental Analysis of Behavior, 115(1), 56–85. https://doi.org/10.1002/jeab.638

Parker, R. I, & Vannest, K. (2009). An improved effect size for single-case research: Nonoverlap of all pairs. Behavior Therapy, 40(4), 357–367. https://doi.org/10.1016/j.beth.2008.10.006

Peniston, E. G., & Kulkosky, P. J. (1991). Alpha-theta brainwave neuro-feedback for Vietnam veterans with combat-related post-traumatic stress disorder. Medical Psychotherapy, 4, 47–60.

van der Kolk, B. A., Hodgdon, H., Gapen, M., Musicaro, R., Suvak, M. K., Hamlin, E., & Spinazzola, J. (2016). A randomized controlled study of neurofeedback for chronic PTSD. PLoS ONE, 11(12), Article e0166752. https://doi.org/10.1371/journal.pone.0166752

---Analysis of Runner’s High Through Quantitative Electroencephalography and Computer-Brain Interface

Bailey, S. P., Hall, E. E., Folger, S. E., & Miller, P. C. (2008). Changes in EEG during graded exercise on a recumbent cycle ergometer. Journal of Sports Science & Medicine, 7(4), 505–511.

Boecker, H., Sprenger, T., Spilker, M. E., Henriksen, G., Koppenhoefer, M., Wagner, K. J., Valet, M., Berthele, A., & Tolle, T. R. (2008). The runner’s high: Opioidergic mechanisms in the human brain. Cerebral Cortex, 18(11), 2523–2531. https://doi.org/10.1093/cercor/bhn013

Chapotot, F., Gronfier, C., Jouny, C., Muzet, A., & Brandenberger, G. (1998). Cortisol secretion is related to electroencephalographic alertness in human subjects during daytime wakefulness. The Journal of Clinical Endocrinology & Metabolism, 83(12), 4263–4268. https://doi.org/10.1210/jcem.83.12.5326

Deaner, R. O., Balish, S. M., & Lombardo, M. P. (2016). Sex differences in sports interest and motivation: An evolutionary perspective. Evolutionary Behavioral Sciences, 10(2), 73–97. https://doi.org/10.1037/ebs0000049

Fuss, J., Steinle, J., Bindila, L., Auer, M. K., Kirchherr, H., Lutz, B., & Gass, P. (2015). A runner’s high depends on cannabinoid receptors in mice. Proceedings of the National Academy of Sciences of the United States of America, 112(42), 13105–13108. https://doi.org/10.1073/pnas.1514996112

Schoenfeld, T. J., & Swanson, C. (2021). A runner’s high for new neurons? Potential role for endorphins in exercise effects on adult neurogenesis. Biomolecules, 11(8), Article 1077. https://doi.org/10.3390/biom11081077

Siebers, M., Biedermann, S. V., & Fuss, J. (2022). Do endocannabinoids cause the runner’s high? Evidence and open questions. The Neuroscientist, 29(3), 352–369. https://doi.org/10.1177/10738584211069981

---ISF Neurofeedback as an Adjuvant Treatment for Adults With Generalized Anxiety Disorders: A Randomized Controlled Pilot Study

Abdian, H., Rezaei, M., Eskandari, Z., Ramezani, S., Pirzeh, R., & Dadashi, M. (2021). The effect of quantitative electroencephalography-based neurofeedback therapy on anxiety, depression, and emotion regulation in people with generalized anxiety disorder. Basic and Clinical Neuroscience, 12(2), 281–290. https://doi.org/10.32598/bcn.12.2.2378.1

American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., text rev.). https://doi.org/10.1176/appi.books.9780890425787

Bekker, M., Balt, K., Bipath, P., Jordaan, J., & du Toit, P. (2021). The effect of infra-slow fluctuation neurofeedback training on a cohort of insomnia participants. NeuroRegulation, 8(3), 137–148. https://doi.org/10.15540/nr.8.3.137

Chen, T.-C., & Lin, I.-M. (2020). The learning effects and curves during high beta down-training neurofeedback for patients with major depressive disorder. Journal of Affective Disorders, 266(100), 235–242. https://doi.org/10.1016/j.jad.2020.01.175

Giacobbe, P., & Flint, A. (2018). Diagnosis and management of anxiety disorders. CONTINUUM: Lifelong Learning in Neurology, 24(3), 893–919. https://doi.org/10.1212/CON.0000000000000607

Leong, S. L., Vanneste, S., Lim, J., Smith, M., Manning, P., De Ridder, D., & Stoeckl-Drax, T. (2018). Effects and side effects of infraslow network neurofeedback (ISF-NF): A randomised double blind placebo controlled trial. International Journal of Psychophysiology, 131, S151. https://doi.org/10.1016/j.ijpsycho.2018.07.402

Perez, T. M., Glue, P., Adhia, D. B., Navid, M. S., Zeng, J., Dillingham, P., Smith, M., Niazi, I. K., Young, C. K., & De Ridder, D. (2022). Infraslow closed-loop brain training for anxiety and depression (ISAD): A protocol for a randomized, double-blind, sham-controlled pilot trial in adult females with internalizing disorders. Trials, 23(1), Article 949. https://doi.org/10.1186/s13063-022-06863-z

Ribas, V. R., Ribas, R. G., Nóbrega, J. de A., da Nóbrega, M. V., Espécie, J. A. de A., Calafange, M. T., Calafange, C. de O. M., & Martins, H. A. de L. (2018). Pattern of anxiety, insecurity, fear, panic and/or phobia observed by quantitative electroencephalography (QEEG). Dementia & Neuropsychologia, 12(3), 264–271. https://doi.org/10.1590/1980-57642018dn12-030007

---Can Machine Intelligence Automation Assist in the Inspection of Clinical EEGs?

Tveit, J., Aurlien, H., Plis, S., Calhoun, V. D., Tatum, W. O., Schomer, D. L., Arntsen, V., Cox, F., Fahoum, F., Gallentine, W. B., Gardella, E., Hahn, C. D., Husain, A. M., Kessler, S., Kural, M. A., Nascimento, F. A., Tankisi, H., Ulvin, L. B., Wennberg, R., & Beniczky, S. (2023). Automated interpretation of clinical electroencephalograms using artificial intelligence. JAMA Neurology, 80(8), 805–812. https://doi.org/10.1001/jamaneurol.2023.1645

---Resting-State Electroencephalography Complexity Is Associated with Oral Ketamine Treatment Response: A Bayesian Analysis of Lempel-Ziv Complexity and Multiscale Entropy

Can, A. T., Hermens, D. F., Dutton, M., Gallay, C. C., Jensen, E., Jones, M., Scherman, J., Beaudequin, D. A., Yang, C., Schwenn, P. E., & Lagopoulos, J. (2021). Low dose oral ketamine treatment in chronic suicidality: An open-label pilot study. Translational Psychiatry, 11(1), Article 101. https://doi.org/10.1038/s41398-021-01230-z

Ionescu, D. F., Bentley, K. H., Eikermann, M., Taylor, N., Akeju, O., Swee, M. B., Pavone, K. J., Petrie, S. R., Dording, C., Mischoulon, D., Alpert, J. E., Brown, E. N., Baer, L., Nock, M. K., Fava, M., & Cusin, C. (2019). Repeat-dose ketamine augmentation for treatment-resistant depression with chronic suicidal ideation: A randomized, double blind, placebo controlled trial. Journal of Affective Disorders, 243, 516–524. https://doi.org/10.1016/j.jad.2018.09.037

Jaworska, N., Wang, H., Smith, D. M., Blier, P., Knott, V., & Protzner, A. B. (2017). Pre-treatment EEG signal variability is associated with treatment success in depression. NeuroImage: Clinical, 17, 368–377. https://doi.org/10.1016/j.nicl.2017.10.035

Lebiecka, K., Zuchowicz, U., Wozniak-Kwasniewska, A., Szekely, D., Olejarczyk, E., & David, O. (2018). Complexity analysis of eeg data in persons with depression subjected to transcranial magnetic stimulation. Frontiers in Physiology, 9, Article 1385. https://doi.org/10.3389/fphys.2018.01385

Lord, B., & Allen, J. J. B. (2023). Evaluating EEG complexity metrics as biomarkers for depression. Psychophysiology, 60(8), Article e14274. https://doi.org/10.1111/psyp.14274

McIntyre, R. S., Rodrigues, N. B., Lee, Y., Lipsitz, O., Subramaniapillai, M., Gill, H., Nasri, F., Majeed, A., Lui, L. M. W., Senyk, O., Phan, L., Carvalho, I. P., Siegel, A., Mansur, R. B., Brietzke, E., Kratiuk, K., Arekapudi, A. K., Abrishami, A., Chau, E. H., … Rosenblat, J. D. (2020). The effectiveness of repeated intravenous ketamine on depressive symptoms, suicidal ideation and functional disability in adults with major depressive disorder and bipolar disorder: Results from the Canadian rapid treatment center of excellence. Journal of Affective Disorders, 274, 903–910. https://doi.org/10.1016/j.jad.2020.05.088

Méndez, M. A., Zuluaga, P., Hornero, R., Gómez, C., Escudero, J., Rodríguez-Palancas, A., Ortiz, T., & Fernández, A. (2012). Complexity analysis of spontaneous brain activity: Effects of depression and antidepressant treatment. Journal of Psychopharmacology, 26(5), 636–643. https://doi.org/10.1177/0269881111408966

Murphy, N., Tamman, A. J. F., Lijffijt, M., Amarneh, D., Iqbal, S., Swann, A., Averill, L. A., O’Brien, B., & Mathew, S. J. (2023). Correction: Neural complexity EEG biomarkers of rapid and post-rapid ketamine effects in late-life treatment-resistant depression: A randomized control trial Neuropsychopharmacology, 48, Article 1699. https://doi.org/10.1038/s41386-023-01618-z

Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K., & Muthukumaraswamy, S. D. (2017). Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Scientific Reports, 7, Article 46421. https://doi.org/10.1038/srep46421

Yang, J., Zhang, Z., Xiong, P., & Liu, X. (2023). Depression detection based on analysis of EEG signals in multi brain regions. Journal of Integrative Neuroscience, 22(4), Article 93. https://doi.org/10.31083/j.jin2204093

---Cognitive and Behavioral Traits Enhancement in AD Patients: A Substantial Impact of Binaural Beats Stimulation on Theta and Alpha Bands

Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2017). The effect of binaural beats on verbal working memory and cortical connectivity. Journal of Neural Engineering, 14(2), Article 026014. https://doi.org/10.1088/1741-2552/aa5d67

Chaieb, L., Wilpert, E. C., Reber, T. P., & Fell, J. (2015). Auditory beat stimulation and its effects on cognition and mood states. Frontiers in Psychiatry, 6, Article 70. https://doi.org/10.3389/fpsyt.2015.00070

Gao, X., Cao, H., Ming, D., Qi, H., Wang, X., Wang, X., Chen, R., & Zhou, P. (2014). Analysis of EEG activity in response to binaural beats with different frequencies. International Journal of Psychophysiology, 94(3), 399–406. https://doi.org/10.1016/j.ijpsycho.2014.10.010

Garcia-Argibay, M., Santed, M. A., & Reales, J. M. (2017). Binaural auditory beats affect long-term memory. Psychological Research, 83, 1124–1136. https://doi.org/10.1007/s00426-017-0959-2

Goodin, P., Ciorciari, J., Baker, K., Carrey, A.-M., Harper, M., & Kaufman, J. (2012). A high-density EEG investigation into steady state binaural beat stimulation. PLoS ONE, 7, Article e34789. https://doi.org/10.1371/journal.pone.0034789

Grose, J. H., & Mamo, S. K. (2012). Electrophysiological measurement of binaural beats: Effects of primary tone frequency and observer age. Ear Hear, 33(2), 187–194. https://doi.org/10.1097/AUD.0b013e318230bbbd

Jirakittayakorn, N., & Wongsawat, Y. (2017). Brain responses to a 6-Hz binaural beat: Effects on general theta rhythm and frontal midline theta activity. Frontiers in Neuroscience, 11, Article 365. https://doi.org/10.3389/fnins.2017.00365

Kraus, J., & Porubanová, M. (2015). The effect of binaural beats on working memory capacity. Studia Psychologica, 57(2), 135–145. https://doi.org/10.21909/sp.2015.02.689

---Addiction and Identity: Personality Insights and Experience Cultivate Difficult Perceptual Mechanisms in Populations of Inmates With Substance Abuse Problems

Barch, D. M., Belden, A. C., Tillman, R., Whalen, D., & Luby, J. L. (2018). Early childhood adverse experiences, inferior frontal gyrus connectivity, and the trajectory of externalizing psychopathology. Journal of the American Academy of Child & Adolescent Psychiatry, 57(3), 183–190. https://doi.org/10.1016/j.jaac.2017.12.011

Cannon, R., Lubar, J., & Baldwin, D. (2008). Self-perception and experiential schemata in the addicted brain. Applied Psychophysiology and Biofeedback, 33(4), 223–238. https://doi.org/10.1007/s10484-008-9067-9

Downar, J., Siddiqi, S. H., Mitra, A., Williams, N., & Liston, C. (2024). Mechanisms of Action of TMS in the treatment of depression. In B. A. Ellenbroek, T. R. E. Barnes, S. L. Andersen, M. P. Paulus, & J. Olivier (Eds.), Current topics in behavioral neurosciences (pp. 233–277). https://doi.org/10.1007/7854_2024_483

Fielenbach, S., Donkers, F. C. L., Spreen, M., & Bogaerts, S. (2017). Neurofeedback as a treatment for impulsivity in a forensic psychiatric population with substance use disorder: study protocol of a randomized controlled trial combined with an n-of-1 clinical trial. JMIR Research Protocols, 6(1), Article e13. https://doi.org/10.2196/resprot.6907

Gabrielsen, K. B., Clausen, T., Haugland, S. H., Hollup, S. A., & Vederhus, J.-K. (2022). Infralow neurofeedback in the treatment of substance use disorders: a randomized controlled trial. Journal of Psychiatry & Neuroscience, 47(3), E222-E229. https://doi.org/10.1503/jpn.210202

Hawes, D. J., & Allen, J. L. (2023). A developmental psychopathology perspective on adverse childhood experiences (ACEs): Introduction to the special issue. Research on Child Adolescent Psychopathology, 51(12), 1715–1723. https://doi.org/10.1007/s10802-023-01100-w

Holland, E., & Holbert, R. (2022). Repetitive TMS for refractory depression in a patient with a seizure disorder. Brain Stimulation, 15(6), 1335–1336. https://doi.org/10.1016/j.brs.2022.10.002

Lensch, T., Clements-Nolle, K., Oman, R. F., Evans, W. P., Lu, M., & Yang, W. (2021). Adverse childhood experiences and co-occurring psychological distress and substance abuse among juvenile offenders: The role of protective factors. Public Health, 194, 42–47. https://doi.org/10.1016/j.puhe.2021.02.014

Paulino, M., Edens, J. F., Moniz, M., Moura, O., Rijo, D., & Simões, M. R. (2024). Personality assessment inventory (PAI) in forensic and correctional settings: A comprehensive review. Journal of Forensic and Legal Medicine, 103, Article 102661. https://doi.org/10.1016/j.jflm.2024.102661

---ERP Neuromarkers of PTSD Associated With Hawaii Red Hill Toxic Jet Fuel Exposure

Askovic, M., Watters, A. J., Coello, M., Aroche, J., Harris, A. W. F., & Kropotov, J. (2020). Evaluation of neurofeedback for posttraumatic stress disorder related to refugee experiences using self-report and cognitive ERP measures. Clinical EEG and Neuroscience, 51(2), 79–86. https://doi.org/10.1177/1550059419849170

Baldwin, C. M., Houston, F. P., Podgornik, M. N., Young, R. S., Barnes, C. A., & Witten, M. L. (2001). Effects of aerosol-vapor JP-8 jet fuel on the functional observational battery, and learning and memory in the rat. Archives of Environmental Health, 56(3), 216–226. https://doi.org/10.1080/00039890109604445

Bocchio, M., Nabavi, S., & Capogna, M. (2017). Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron, 94(4), 731–743. https://doi.org/10.1016/j.neuron.2017.03.022

Knave, B., Mindus, P., & Struwe, G. (1979). Neurasthenic symptoms in workers occupationally exposed to jet fuel. Acta Psychiatrica Scandinavica, 60(1), 39–49. https://doi.org/10.1111/j.1600-0447.1979.tb00263.x

Koschier F. J. (1999). Toxicity of middle distillates from dermal exposure. Drug and Chemical Toxicology, 22(1), 155–164. https://doi.org/10.3109/01480549909029729

National Research Council. (2003). Toxicologic assessment of jet-propulsion fuel 8: Effects of jet-propulsion fuel 8 on the nervous system. The National Academies Press. https://doi.org/10.17226/10578

---QEEG-Guided sLORETA Neurofeedback Effects on Event-Related Potentials and Cognitive Performance in a 7-Year-Old Moderate Concussion Patient: A Case Study

Afsar, M., Choudhari, N., Shukla, D., & Rajeswaran J. (2021). The road less traveled: Integrating neurotherapy with holistic neuropsychological rehabilitation after severe head injury. NeuroRegulation, 8(1), 57–68. https://doi.org/10.15540/nr.8.1.57

Buhagiar, F., Fitzgerald, M., Hellewell, S. C.,Bell, J., Moore, S., Gozt, A. K., Thorne, J., Thomas, E., Celenza, A., Xu, D., Robinson, S., Cowen, G., Bynevelt, M., Fatovich, D. M., & Pestell, C. F. (2023). Brain connectivity, acute post-concussion symptoms, and cognition in adults with concussion: A quantitative electroencephalography study. NeuroRegulation, 10(2), 94–117. https://doi.org/10.15540/nr.10.2.94

Duff, J. (2004). The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of post-concussion syndrome. Clinical EEG and Neuroscience, 35(4), 198–209. https://doi.org/10.1177/155005940403500410

Gupta, R. K., Afsar, M., Yadav, R. K., Shukla, D. P., & Rajeswaran, J. (2020). Effect of EEG neurofeedback training in patients with moderate–severe traumatic brain injury: A clinical and electrophysiological outcome study. NeuroRegulation, 7(2), 75–83. https://doi.org/10.15540/nr.7.2.75

Koberda, J. L. (2015). Loreta z-score neurofeedback-effectiveness in rehabilitation of patients suffering from traumatic brain injury. Journal of Neurology and Neurobiology, 1(4), 1–9. https://doi.org/10.16966/2379-7150.113

Shaffer, F., & Venner, J. (2013). Heart rate variability anatomy and physiology. Biofeedback, 41(1), 13–25. https://doi.org/10.5298/1081-5937-41.1.05

Stevens, L., Heick, J., Raab, S., Woodruff, C., Martinez, R. H., Janetsky, S., Carmichael, J., Burchett, G., Macias, M., Mederos, G., Ragan, A., Rodriguez, Y., Cason, B., Dunn, R., Eisenbrey, A., Fernandez, S., King, K., Yount, E., Sapach, K., ... Ellis, K. (2024). Quantitative EEG significantly and clinically differentiates acute mild TBI patients from matched neurotypical controls: Power spectral and connectivity analyses. NeuroRegulation, 11(2), 140–159. https://doi.org/10.15540/nr.11.2.140

Thornton, K. E. (2014). A QEEG activation methodology that obtained 100% accuracy in the discrimination of traumatic brain injured from normal and does the learning disabled show the brain injury pattern? NeuroRegulation, 1(3–4), 209–218. https://doi.org/10.15540/nr.1.3-4.209

Downloads

Published

2024-12-20

Issue

Section

Proceedings