Bidirectional Alpha Power EEG Neurofeedback During a Focused Attention Meditation Practice in Novices
DOI:
https://doi.org/10.15540/nr.11.3.230Keywords:
EEG-neurofeedback, Brain computer interface, alpha, meditation, Focused Attention, self-regulationAbstract
Background. Neurofeedback and meditation practices are techniques aimed at enhancing awareness and self-regulation. Training of alpha power has been found to increase mindfulness outcomes, and increases in alpha power seem relatively consistent during focused attention meditation practices. Considering the commonalities between these self-regulation techniques, we here examined the trainability of alpha power while engaging in a focused attention meditation, allowing novice practitioners to attain self-regulation with an integrated training. In a within-subject design, 31 participants (25 women, 6 men, aged 23.16, range 18–30) engaged in two types of alpha neurofeedback training conditions, one aimed at upregulating alpha, the other aimed at downregulating global alpha absolute power. Results. Linear mixed-effect analyses showed a differential effect of the two neurofeedback training conditions, indicating that alpha power was overall higher during upregulation compared to downregulation training. While differential alpha power was evident “online” during training, there appeared to be no “offline” transfer, as measured during a resting-state recording posttraining. Conclusion. These results provide relevant insights into the applicability of alpha neurofeedback combined with focused attention meditation instructions that may guide future work into the application of neurofeedback approaches for supporting meditation practice.
References
Ahani, A., Wahbeh, H., Nezamfar, H., Miller, M., Erdogmus, D., & Oken, B. (2014). Quantitative change of EEG and respiration signals during mindfulness meditation. Journal of NeuroEngineering and Rehabilitation, 11(1), Article 87. https://doi.org/10.1186/1743-0003-11-87
Alkoby, O., Abu-Rmileh, A., Shriki, O., & Todder, D. (2018). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience, 378, 155–164. https://doi.org/10.1016/j.neuroscience.2016.12.050
Bortolla, R., Galli, M., Spada, G. E., & Maffei, C. (2022). Mindfulness effects on mind wandering and autonomic balance. Applied Psychophysiology Biofeedback, 47(1), 53–64. https://doi.org/10.1007/s10484-021-09527-x
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Brandmeyer, T., & Delorme, A. (2018). Reduced mind wandering in experienced meditators and associated EEG correlates. Experimental Brain Research, 236(9), 2519–2528. https://doi.org/10.1007/s00221-016-4811-5
Brickwedde, M., Krüger, M. C., & Dinse, H. R. (2019). Somatosensory alpha oscillations gate perceptual learning efficiency. Nature Communications, 10(1), Article 263. https://doi.org/10.1038/s41467-018-08012-0
Britton, W. B., Lindahl, J. R., Rael Cahn, B., Davis, J. H., & Goldman, R. E. (2014). Awakening is not a metaphor: The effects of Buddhist meditation practices on basic wakefulness. Annals of the New York Academy of Sciences, 1307(1), 64–81. https://doi.org/10.1111/nyas.12279
Burzler, M. A., & Tran, U. S. (2022). Dispositional mindfulness and the process of mindfulness cultivation: A qualitative synthesis and critical assessment of the extant literature on the Five Facet Mindfulness Questionnaire (FFMQ). Collabra: Psychology, 8(1), 56176. https://doi.org/10.1525/collabra.56176
Cahn, B. R., Delorme, A., & Polich, J. (2013). Event-related delta, theta, alpha and gamma correlates to auditory oddball processing during Vipassana meditation. Social Cognitive and Affective Neuroscience, 8(1), 100–111. https://doi.org/10.1093/scan/nss060
Cavanagh, K., Strauss, C., Forder, L., & Jones, F. (2014). Can mindfulness and acceptance be learnt by self-help?: A systematic review and meta-analysis of mindfulness and acceptance-based self-help interventions. Clinical Psychology Review, 34(2), 118–129. https://doi.org/10.1016/j.cpr.2014.01.001
Chang, C.-Y., Hsu, S.-H., Pion-Tonachini, L., & Jung, T.-P. (2020). Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Transactions on Biomedical Engineering, 67(4), 1114–1121. https://doi.org/10.1109/TBME.2019.2930186
Chikhi, S., Matton, N., Sanna, M., & Blanchet, S. (2023). Mental strategies and resting state EEG: Effect on high alpha amplitude modulation by neurofeedback in healthy young adults. Biological Psychology, 178, Article 108521. https://doi.org/10.1016/j.biopsycho.2023.108521
Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47(1), 65–74. https://doi.org/10.1016/S0167-8760(02)00107-1
Creswell, J. D., Lindsay, E. K., Villalba, D. K., & Chin, B. (2019). Mindfulness training and physical health: Mechanisms and outcomes. Psychosomatic Medicine, 81(3), 224–232. https://doi.org/10.1097/PSY.0000000000000675
da Costa, N. M. C., Bicho, E., Ferreira, F., Vilhena, E., & Dias, N. S. (2021). A multivariate randomized controlled experiment about the effects of mindfulness priming on EEG neurofeedback self-regulation serious games. Applied Sciences, 11(16), Article 7725. https://doi.org/10.3390/app11167725
Deiber, M.-P., Hasler, R., Colin, J., Dayer, A., Aubry, J.-M., Baggio, S., Perroud, N., & Ros, T. (2020). Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. NeuroImage: Clinical, 25, Article 102145. https://doi.org/10.1016/j.nicl.2019.102145
Dekker, M. K. J., Sitskoorn, M. M., Denissen, A. J. M., & van Boxtel, G. J. M. (2014). The time-course of alpha neurofeedback training effects in healthy participants. Biological Psychology, 95, 70–73. https://doi.org/10.1016/j.biopsycho.2013.11.014
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trail EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Dunn, B. R., Hartigan, J. A., & Mikulas, W. L. (1999). Concentration and mindfulness meditations: Unique forms of consciousness? Applied Psychophysiology and Biofeedback, 24(3), 147–165. https://doi.org/10.1023/A:1023498629385
Escolano, C., Aguilar, M., & Minguez, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Boston, MA, USA (pp. 2327–2330). https://doi.org/10.1109/IEMBS.2011.6090651
Escolano, C., Navarro-Gil, M., Garcia-Campayo, J., Congedo, M., De Ridder, D., & Minguez, J. (2014). A controlled study on the cognitive effect of alpha neurofeedback training in patients with major depressive disorder. Frontiers in Behavioral Neuroscience, 8, Article 296. https://doi.org/10.3389/fnbeh.2014.00296
Fell, J., Axmacher, N., & Haupt, S. (2010). From alpha to gamma: Electrophysiological correlates of meditation-related states of consciousness. Medical Hypotheses, 75, 218–224. https://doi.org/10.1016/j.mehy.2010.02.025
Goldin, P. R., & Gross, J. J. (2010). Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion, 10(1), 83–91. https://doi.org/10.1037/a0018441
Gotink, R. A., Meijboom, R., Vernooij, M. W., Smits, M., & Hunink, M. G. M. (2016). 8-week mindfulness based stress reduction induces brain changes similar to traditional long-term meditation practice – A systematic review. Brain and Cognition, 108, 32–41. https://doi.org/10.1016/j.bandc.2016.07.001
Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology Biofeedback, 30(1), 1–10. https://doi.org/10.1007/s10484-005-2169-8
Heatherton, T. F. (2011). Neuroscience of self and self-regulation. Annual Review of Psychology, 62, 363–390. https://doi.org/10.1146/annurev.psych.121208.131616
Heckenberg, R. A., Eddy, P., Kent, S., & Wright, B. J. (2018). Do workplace-based mindfulness meditation programs improve physiological indices of stress? A systematic review and meta-analysis. Journal of Psychosomatic Research, 114, 62–71. https://doi.org/10.1016/j.jpsychores.2018.09.010
Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6(6), 537–559. https://doi.org/10.1177/1745691611419671
Jiang, H., Stieger, J., Kreitzer, M. J., Engel, S., & He, B. (2021). Frontolimbic alpha activity tracks intentional rest BCI control improvement through mindfulness meditation. Scientific Reports, 11(1), Article 6818. https://doi.org/10.1038/s41598-021-86215-0
Kabat-Zinn, J. (2013). Full catastrophe living, revised edition: Using the wisdom of your body and mind to face stress, pain, and illness. Dell Publishing. https://doi.org/10.1037/032287
Kluetsch, R. C., Ros, T., Théberge, J., Frewen, P. A., Calhoun, V. D., Schmahl, C., Jetly, R., & Lanius, R. A. (2014). Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. Acta Psychiatrica Scandinavica, 130(2), 123–136. https://doi.org/10.1111/acps.12229
Kral, T. R. A., Schuyler, B. S., Mumford, J. A., Rosenkranz, M. A., Lutz, A., & Davidson, R. J. (2018). Impact of short-and long-term mindfulness meditation training on amygdala reactivity to emotional stimuli. NeuroImage, 181, 301–313. https://doi.org/10.1016/j.neuroimage.2018.07.013
Lagopoulos, J., Xu, J., Rasmussen, I., Vik, A., Malhi, G. S., Eliassen, C. F., Arntsen, I. E., Sæther, J. G., Hollup, S., Holen, A., Davanger, S., & Ellingsen, Ø. (2009). Increased theta and alpha EEG activity during nondirective meditation. The Journal of Alternative and Complementary Medicine, 15(11), 1187–1192. https://doi.org/10.1089/acm.2009.0113
Lee, D. J., Kulubya, E., Goldin, P., Goodarzi, A., & Girgis, F. (2018). Review of the neural oscillations underlying meditation. Frontiers in Neuroscience, 12, Article 178. https://doi.org/10.3389/fnins.2018.00178
Lomas, T., Ivtzan, I., & Fu, C. H. Y. (2015). A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience & Biobehavioral Reviews, 57, 401–410. https://doi.org/10.1016/j.neubiorev.2015.09.018
Mani, M., Kavanagh, D. J., Hides, L., & Stoyanov, S. R. (2015). Review and evaluation of mindfulness-based iPhone apps. JMIR MHealth and UHealth, 3(3), Article e82. https://doi.org/10.2196/mhealth.4328
Milz, P., Faber, P. L., Lehmann, D., Kochi, K., & Pascual-Marqui, R. D. (2014). sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants. Frontiers in Human Neuroscience, 8, Article 303. https://doi.org/10.3389/fnhum.2014.00303
Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P.-I., Mak, P. U., Vai, M. I., & Rosa, A. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83–87. https://doi.org/10.1016/j.ijpsycho.2012.07.182
Nan, W., Wan, F., Tang, Q., Wong, C. M., Wang, B., & Rosa, A. (2018). Eyes-closed resting EEG predicts the learning of alpha down-regulation in neurofeedback training. Frontiers in Psychology, 9, Article 1607. https://doi.org/10.3389/fpsyg.2018.01607
Navarro Gil, M., Escolano Marco, C., Montero-Marín, J., Minguez Zafra, J., Shonin, E., & García Campayo, J. (2018). Efficacy of neurofeedback on the increase of mindfulness-related capacities in healthy individuals: A controlled trial. Mindfulness, 9(1), 303–311. https://doi.org/10.1007/s12671-017-0775-1
Nicholson, A. A., Densmore, M., Frewen, P. A., Neufeld, R. W. J., Théberge, J., Jetly, R., Lanius, R. A., & Ros, T. (2023). Homeostatic normalization of alpha brain rhythms within the default-mode network and reduced symptoms in post-traumatic stress disorder following a randomized controlled trial of electroencephalogram neurofeedback. Brain Communications, 5(2), Article fcad068. https://doi.org/10.1093/braincomms/fcad068
Ooishi, Y., Fujino, M., Inoue, V., Nomura, M., & Kitagawa, N. (2021). Differential effects of focused attention and open monitoring meditation on autonomic cardiac modulation and cortisol secretion. Frontiers in Physiology, 12, Article 675899. https://doi.org/10.3389/fphys.2021.675899
Pandey, P., Rodriguez-Larios, J., & Miyapuram, K. P., & Lomas, D. (2022). Detecting moments of distraction during meditation practice based on changes in the EEG signal. TechRxiv. https://doi.org/10.36227/techrxiv.21572586
Plaza, I., Demarzo, M. M. P., Herrera-Mercadal, P., & García-Campayo, J. (2013). Mindfulness-based mobile applications: Literature review and analysis of current features. JMIR MHealth and UHealth, 1(2), Article e24. https://doi.org/10.2196/mhealth.2733
Radüntz, T., Scouten, J., Hochmuth, O., & Meffert, B. (2017). Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features. Journal of Neural Engineering, 14(4), Article 046004. https://doi.org/10.1088/1741-2552/aa69d1
Ros, T., Michela, A., Bellman, A., Vuadens, P., Saj, A., & Vuilleumier, P. (2017). Increased alpha-rhythm dynamic range promotes recovery from visuospatial neglect: A neurofeedback study. Neural Plasticity, 2017, Article 7407241. https://doi.org/10.1155/2017/7407241
Ros, T., Munneke, M. A. M., Ruge, D., Gruzelier, J. H., & Rothwell, J. C. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. European Journal of Neuroscience, 31(4), 770–778. https://doi.org/10.1111/j.1460-9568.2010.07100.x
Ros, T., Théberge, J., Frewen, P. A., Kluetsch, R., Densmore, M., Calhoun, V. D., & Lanius, R. A. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage, 65, 324–335. https://doi.org/10.1016/j.neuroimage.2012.09.046
Sorger, B., Scharnowski, F., Linden, D. E. J., Hampson, M., & Young, K. D. (2019). Control freaks: Towards optimal selection of control conditions for fMRI neurofeedback studies. NeuroImage, 186, 256–265. https://doi.org/10.1016/j.neuroimage.2018.11.004
Stieger, J. R., Engel, S., Jiang, H., Cline, C. C., Kreitzer, M. J., & He, B. (2021). Mindfulness improves brain-computer interface performance by increasing control over neural activity in the alpha band. Cerebral Cortex, 31(1), 426–438. https://doi.org/10.1093/cercor/bhaa234
Su, K.-H., Hsueh, J.-J., Chen, T., & Shaw, F.-Z. (2021). Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity. Scientific Reports, 11(1), Article 19615. https://doi.org/10.1038/s41598-021-99235-7
Sun, S., Hu, C., Pan, J., Liu, C., & Huang, M. (2019). Trait mindfulness is associated with the self-similarity of heart rate variability. Frontiers in Psychology, 10, Article 314. https://doi.org/10.3389/fpsyg.2019.00314
Uslu, S., & Vögele, C. (2023). The more, the better? Learning rate and self-pacing in neurofeedback enhance cognitive performance in healthy adults. Frontiers in Human Neuroscience, 17, Article 1077039. https://doi.org/10.3389/fnhum.2023.1077039
Wan, F., Nan, W., Vai, M. I., & Rosa, A. (2014). Resting alpha activity predicts learning ability in alpha neurofeedback. Frontiers in Human Neuroscience, 8, Article 500. https://doi.org/10.3389/fnhum.2014.00500
Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431. https://doi.org/10.1016/j.neuroimage.2010.08.078
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Javier R. Soriano , Eduardo Bracho Montes de Oca, Angeliki-Ilektra Karaiskou, Hendrik-Jan De Vuyst, Julio Rodriguez-Larios, Naishi Feng, Carolina Varon, Kaat Alaerts
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).