Unraveling the Risk Landscape of Mild Cognitive Impairment: A Pilot QEEG Study With Z-Score and Cordance Analysis
DOI:
https://doi.org/10.15540/nr.11.3.274Keywords:
QEEG, Mild Cognitive Impairment, z-score, cordance, sLORETAAbstract
Introduction. Mild cognitive impairment (MCI) is the decline in cognitive function among individuals aged over 60, and the transitional phase between normal aging and dementia. The Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA) may not detect early dementia, hence the importance of identifying MCI or early dementia through biomarkers, such as EEG. Objectives. Evaluating EEG quantification in raw values, EEG quantification in z-scores, and cordance measures as potential differential biomarkers to discriminate MCI. Method. The study involved 20 subjects; 10 healthy individuals and 10 with memory complaints. An EEG was obtained from each participant and raw scores, z-scores, cordance, and three-dimensional data were analyzed. Results. No differences were found in absolute power in raw scores, three-dimensional analysis and cordance variables. A significant difference was found between the groups regarding the Delta1 z-scores at the F7 location, where the memory complaints group exhibited a higher z-score. Conclusions. Normalized EEG quantification data, converted into z-scores, could serve as potential markers to distinguish between cognitively healthy individuals and those at risk of MCI. Using qEEG normative databases may reveal useful differences for identifying subjects at risk of MCI. Further research into intermediate states, between normal cognitive function and established MCI, is needed to clarify this aspect.
References
Alexopoulos, P., Sorg, C., Förschler, A., Grimmer, T., Skokou, M., Wohlschläger, A., Perneczky, R., Zimmer, C., Kurz, A., & Preibisch, C. (2012). Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. European Archives of Psychiatry and Clinical Neuroscience, 262(1), 69–77. https://doi.org/10.1007/s00406-011-0226-2
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, text revision (5th ed.). https://doi.org/10.1176/appi.books.9780890425787
American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders, text revision (5th ed.), neurocognitive disorders supplement. https://psychiatryonline.org/pb-assets/dsm/update/DSM-5-TR_Neurocognitive-Disorders-Supplement_2022_APA_Publishing-1670265127867.pdf
Austin, B. P., Nair, V. A., Meier, T. B., Xu, G., Rowley, H. A., Carlsson, C. M., Johnson, S. C., & Prabhakaran, V. (2011). Effects of hypoperfusion in Alzheimer’s disease. Journal of Alzheimer’s Disease, 26(s3), 123–133. https://doi.org/10.3233/JAD-2011-0010
Bai, W., Chen, P., Cai, H., Zhang, Q., Su, Z., Cheung, T., Jackson, T., Sha, S., & Xiang, Y.-T. (2022). Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: A meta-analysis and systematic review of epidemiology studies. Age and Ageing, 51(8), Article afac173. https://doi.org/10.1093/ageing/afac173
Carnero-Pardo, C., Rego-García, I., Mené Llorente, M., Alonso Ródenas, M., & Vílchez Carrillo, R. (2022). Diagnostic performance of brief cognitive tests in cognitive impairment screening. Neurología, 37(6), 441–449. https://doi.org/10.1016/j.nrl.2019.05.007
Collura, T. (2012). BrainAvatar: Integrated brain imaging, neurofeedback, and reference database system. NeuroConnections Summer, 31–36.
Collura, T. (2017). Quantitative EEG and live z-score neurofeedback—Current clinical and scientific context. Biofeedback, 45(2), 25–29. https://doi.org/10.5298/1081-5937-45.1.07
Costa, S., St George, R. J., McDonald, J. S., Wang, X., & Alty, J. (2022). Diagnostic accuracy of the overlapping infinity loops, wire cube, and clock drawing tests in subjective cognitive decline, mild cognitive impairment and dementia. Geriatrics, 7(4), Article 72. https://doi.org/10.3390/geriatrics7040072
Deslandes, A., Veiga, H., Cagy, M., Fiszman, A., Piedade, R., & Ribeiro, P. (2004). Quantitative electroencephalography (qEEG) to discriminate primary degenerative dementia from major depressive disorder (depression). Arquivos de Neuro-Psiquiatria, 62(1), 44–50. https://doi.org/10.1590/S0004-282X2004000100008
Funaki, K., Nakajima, S., Noda, Y., Wake, T., Ito, D., Yamagata, B., Yoshizaki, T., Kameyama, M., Nakahara, T., Murakami, K., Jinzaki, M., Mimura, M., & Tabuchi, H. (2019). Can we predict amyloid deposition by objective cognition and regional cerebral blood flow in patients with subjective cognitive decline? Psychogeriatrics, 19(4), 325–332. https://doi.org/10.1111/psyg.12397
Gracefire, P. (2016). Introduction to the concepts and clinical applications of multivariate live z-score training, PZOK and sLORETA feedback. In T. Collura, & J. A. Frederick (Eds.), Handbook of clinical QEEG and neurofeedback (pp. 326–383). Routledge.
Greenberg, S. A. (n.d.). The Geriatric Depression Scale (GDS). HIGN. https://hign.org/consultgeri/try-this-series/geriatric-depression-scale-gds
Han, L.-L., Wang, L., Xu, Z.-H., Liang, X.-N., Zhang, M.-W., Fan, Y., Sun, Y., Liu, F.-T., Yu, W.-B., & Tang, Y.-L. (2021). Disease progression in Parkinson’s disease patients with subjective cognitive complaint. Annals of Clinical and Translational Neurology, 8(10), 2096–2104. https://doi.org/10.1002/acn3.51461
Hong, J. Y., & Lee, P. H. (2023). Subjective cognitive complaints in cognitively normal patients with Parkinson’s disease: A systematic review. Journal of Movement Disorders, 16(1), 1–12. https://doi.org/10.14802/jmd.22059
Jannati, A., Toro-Serey, C., Gomes-Osman, J., Banks, R., Ciesla, M., Showalter, J., Bates, D., Tobyne, S., & Pascual-Leone, A. (2024). Digital clock and recall is superior to the Mini-Mental State Examination for the detection of mild cognitive impairment and mild dementia. Alzheimer’s Research & Therapy, 16(1), Article 2. https://doi.org/10.1186/s13195-023-01367-7
John, E., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210(4475), 1255–1258. https://doi.org/10.1126/science.7434026
John, E. R., Karmel, B. Z., Corning, W. C., Easton, P., Brown, D., Ahn, H., John, M., Harmony, T., Prichep, L., Toro, A., Gerson, I., Bartlett, F., Thatcher, R., Kaye, H., Valdes, P., & Schwartz, E. (1977). Neurometrics: Numerical taxonomy identifies different profiles of brain functions within groups of behaviorally similar people. Science, 196(4297), 1393–1410. https://doi.org/10.1126/science.867036
John, E. R., Prichep, L. S., & Easton, P. (1987). Normative data banks and neurometrics: Basic concepts, method and results of norm construction. In A. S. Gevins, & A. Remond (Eds.), Method of analysis of brain electrical and magnetic signals: Vol. 1. EEG handbook. Elsevier Science Publishers B.V (Biomedical Division).
Jorm, A. F., & Jacomb, P. A. (1989). The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Socio-demographic correlates, reliability, validity and some norms. Psychological Medicine, 19(4), 1015–1022. https://doi.org/10.1017/S0033291700005742
Katayama, O., Stern, Y., Habeck, C., Lee, S., Harada, K., Makino, K., Tomida, K., Morikawa, M., Yamaguchi, R., Nishijima, C., Misu, Y., Fujii, K., Kodama, T., & Shimada, H. (2023). Neurophysiological markers in community-dwelling older adults with mild cognitive impairment: An EEG study. Alzheimer’s Research & Therapy, 15(1), Article 217. https://doi.org/10.1186/s13195-023-01368-6
Ko, J., Park, U., Kim, D., & Kang, S. W. (2021). Quantitative electroencephalogram standardization: A sex- and age-differentiated normative database. Frontiers in Neuroscience, 15, Article 766781. https://doi.org/10.3389/fnins.2021.766781
Leuchter, A. F., Cook, I. A., Lufkin, R. B., Dunkin, J., Newton, T. F., Cummings, J. L., Mackey, J. K., & Walter, D. O. (1994). Cordance: A new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. NeuroImage, 1(3), 208–219. https://doi.org/10.1006/nimg.1994.1006
Leuchter, A. F., Uijtdehaage, S. H. J., Cook, I. A., O'Hara, R., & Mandelkern, M. (1999). Relationship between brain electrical activity and cortical perfusion in normal subjects. Psychiatry Research: Neuroimaging, 90(2), 125–140. https://doi.org/10.1016/S0925-4927(99)00006-2
Li, J., Broster, L. S., Jicha, G. A., Munro, N. B., Schmitt, F. A., Abner, E., Kryscio, R., Smith, C. D., & Jiang, Y. (2017). A cognitive electrophysiological signature differentiates amnestic mild cognitive impairment from normal aging. Alzheimer’s Research & Therapy, 9(1), Article 3. https://doi.org/10.1186/s13195-016-0229-3
Matthis, P., Scheffner, D., Benninger, Chr., Lipinski, Chr., & Stolzis, L. (1980). Changes in the background activity of the electroencephalogram according to age. Electroencephalography and Clinical Neurophysiology, 49(5–6), 626–635. https://doi.org/10.1016/0013-4694(80)90403-4
Mills, K. A., Schneider, R. B., Saint-Hilaire, M., Ross, G. W., Hauser, R. A., Lang, A. E., Halverson, M. J., Oakes, D., Eberly, S., Litvan, I., Blindauer, K., Aquino, C., Simuni, T., & Marras, C. (2020). Cognitive impairment in Parkinson’s disease: Associations between subjective and objective cognitive decline in a large longitudinal study. Parkinsonism & Related Disorders, 80, 127–132. https://doi.org/10.1016/j.parkreldis.2020.09.028
Musaeus, C. S., Engedal, K., Høgh, P., Jelic, V., Mørup, M., Naik, M., Oeksengaard, A.-R., Snaedal, J., Wahlund, L.-O., Waldemar, G., & Andersen, B. B. (2018). EEG theta power is an early marker of cognitive decline in dementia due to Alzheimer’s disease. Journal of Alzheimer’s Disease, 64(4), 1359–1371. https://doi.org/10.3233/JAD-180300
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
Pérez-Elvira, R., & Jiménez Gómez, A. (2020). sLORETA neurofeedback in fibromyalgia. Neuroscience Research Notes, 3(1), 1–10. https://doi.org/10.31117/neuroscirn.v3i1.40
Rosenzweig, A. (2023, August 17). Montreal Cognitive Assessment (MOCA) test for dementia. Verywell Health. https://www.verywellhealth.com/alzheimers-and-montreal-cognitive-assessment-moca-98617
Sánchez Cabaco, A., De La Torre, L., Alvarez Núñez, D. N., Mejía Ramírez, M. A., & Wöbbeking Sánchez, M. (2023). Tele neuropsychological exploratory assessment of indicators of mild cognitive impairment and autonomy level in Mexican population over 60 years old. PEC Innovation, 2, Article 100107. https://doi.org/10.1016/j.pecinn.2022.100107
Shim, Y., Yang, D. W., Ho, S., Hong, Y. J., Jeong, J. H., Park, K. H., Kim, S., Wang, M. J., Choi, S. H., & Kang, S. W. (2022). Electroencephalography for early detection of Alzheimer’s disease in subjective cognitive decline. Dementia and Neurocognitive Disorders, 21(4), 126. https://doi.org/10.12779/dnd.2022.21.4.126
Sierra-Marcos, A. (2017). regional cerebral blood flow in mild cognitive impairment and Alzheimer’s disease measured with arterial spin labeling magnetic resonance imaging. International Journal of Alzheimer’s Disease, 2017, Article 5479597. https://doi.org/10.1155/2017/5479597
Sperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., Hedden, T., Becker, J. A., Rentz, D. M., Selkoe, D. J., & Johnson, K. A. (2010). Functional alterations in memory networks in early Alzheimer’s disease. NeuroMolecular Medicine, 12(1), 27–43. https://doi.org/10.1007/s12017-009-8109-7
Stokin, G. B., Krell-Roesch, J., Petersen, R. C., & Geda, Y. E. (2015). Mild neurocognitive disorder: An old wine in a new bottle. Harvard Review of Psychiatry, 23(5), 368–376. https://doi.org/10.1097/hrp.0000000000000084
Stoller, L. (2011). Z-score training, combinatorics, and phase transitions. Journal of Neurotherapy, 15(1), 35–53. https://doi.org/10.1080/10874208.2010.545758
Tomasello, L., Carlucci, L., Laganà, A., Galletta, S., Marinelli, C. V., Raffaele, M., & Zoccolotti, P. (2023). Neuropsychological evaluation and quantitative EEG in patients with frontotemporal dementia, Alzheimer’s Disease, and mild cognitive impairment. Brain Sciences, 13(6), Article 930. https://doi.org/10.3390/brainsci13060930
Weintraub, S. (2022). Neuropsychological assessment in dementia diagnosis. Continuum: Lifelong Learning in Neurology, 28(3), 781–799. https://doi.org/10.1212/CON.0000000000001135
Xiao, Y., Ou, R., Yang, T., Liu, K., Wei, Q., Hou, Y., Zhang, L., Lin, J., & Shang, H. (2021). Different associated factors of subjective cognitive complaints in patients with early- and late-onset Parkinson’s disease. Frontiers in Neurology, 12, Article 749471. https://doi.org/10.3389/fneur.2021.749471
Yener, G. G., Emek-Savaş, D. D., Lizio, R., Çavuşoğlu, B., Carducci, F., Ada, E., Güntekin, B., Babiloni, C. C., & Başar, E. (2016). Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. International Journal of Psychophysiology, 103, 110–117. https://doi.org/10.1016/j.ijpsycho.2015.02.005
Zhuang, L., Yang, Y., & Gao, J. (2021). Cognitive assessment tools for mild cognitive impairment screening. Journal of Neurology, 268(5), 1615–1622. https://doi.org/10.1007/s00415-019-09506-7
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ruben Perez-Elvira, Lizbeth De La Torre, Paula Prieto, Antonio Sánchez-Cabaco
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).