Quantitative EEG Significantly and Clinically Differentiates Acute Mild TBI Patients From Matched Neurotypical Controls: Power Spectral and Connectivity Analyses
DOI:
https://doi.org/10.15540/nr.11.2.140Keywords:
QEEG, Power Spectral, Connectivity, Coherence, Phase Difference, ConcussionAbstract
Concussive head injuries result in not only coup–contrecoup trauma to neurological tissue at injury sites but also a mechanical shearing of neurological pathways throughout the brain. Unfortunately, however, the diagnosis of concussion has long been based largely on self-reports of overt symptoms and virtually never includes an assessment of involved neurological tissues and pathways. This deficiency then leads to premature return to play or duty, to the risk of subsequent neurological reinjury and, in worse cases, to chronic traumatic encephalopathy. We offer here a test of quantitative EEG (qEEG) as a convenient, low-cost remedy to this problem in the evaluation of acute head injury in 19 diagnosed concussion patients matched to neurotypical controls. Results of qEEG indicate numerous Brodmann area functional clusters of highly significant and very large effect sizes in the differentiation of these two groups in EEG connectivity measures of coherence and phase difference. These findings indicate that qEEG can be used as a “hard” neurological measure of traumatic brain injury that directly assesses this neuronal shearing process as well as direct tissue injury and may offer an essential biomarker of readiness to return to play or duty and the avoidance of subsequent retraumatization of the brain.
References
Alexander, D. M., Arns, M. W., Paul, R. H., Rowe, D. L., Cooper, N., Esser, A. H., Fallahpour K., Stephan, B. C. M., Heesen, E., Breteler, R., Williams, L. M., & Gordon, E. (2006, March 10). EEG markers for cognitive decline in elderly subjects with subjective memory complaints. Journal of Integrative Neuroscience, 5(1), 49–74. https://doi.org/10.1142/s0219635206001021
Applied Neuroscience, Inc. (2016). NeuroGuide (Version 2.8.7) [Computer software].
Bazarian, J. J., Elbin, R. J., Casa, D. J., Hotz, G. A., Neville, C., Lopez, R. M., Schnyer, D. M., Yeargin, S., & Covassin, T. (2021). Validation of a machine learning brain electrical activity-based index to aid in diagnosing concussion among athletes. JAMA Network Open, 4(2), Article e2037349. https://doi.org/10.1001/jamanetworkopen.2020.37349
Bigler, E. D. (2013). Neuroimaging biomarkers of mild traumatic brain injury (mTBI). Neuropsychology Review, 23, 169–209. https://doi.org/10.1007/s11065-013-9237-2
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshimrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Verlag von Johann Ambrosius Barth.
Centers for Disease Control and Prevention. (2018). Report to congress: The management of traumatic brain injury in children. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention, Atlanta, GA. https://www.cdc.gov/traumatic-brain-injury/media/pdfs/TBI-ReporttoCongress-508.pdf
Chaturvedi, M., Bogaarts, J., Kozak, V., Hatz, F., Gschwandtner, U., Meyer, A., Fuhr, P., & Roth, V. (2019). Phase lag index and spectral power as QEEG features for identification of patients with mild cognitive impairment in Parkinson's disease. Clinical Neurophysiology, 130(10), 1937–1944. https://doi.org/10.1016/j.clinph.2019.07.017
Cochran, C. D., & Hale, W. D. (1985). College student norms on the Brief Symptom Inventory. Journal of Clinical Psychology, 41(6), 777–779. https://doi.org/10.1002/1097-4679(198511)41:6<777::AID-JCLP2270410609>3.0.CO;2-2
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Assoc.
Connelly, C., Martin, K., Elterman, J., & Zonies, D. (2017). Early traumatic brain injury screen in 6594 inpatient combat casualties. Injury, 48(1), 64–69. https://doi.org/10.1016/j.injury.2016.08.025
Daneshvar, D. H., Nowinski, C. J., McKee, A., & Cantu, R. C. (2011, January). The epidemiology of sport-related concussion. Clinics in Sports Medicine, 30(1), 1–17. https://doi.org/10.1016/j.csm.2010.08.006
Dawson, G., Warrenburg, S., & Fuller, P. (1982). Cerebral lateralization in individuals diagnosed as autistic in early childhood. Brain and Language, 15(2), 353–368. https://doi.org/10.1016/0093-934X(82)90065-7
Derogatis, L. R., & Melisaratos, N. (1983). The Brief Symptom Inventory: An introductory report. Psychological Medicine, 13(3), 595–605.
Donaldson, S., Donaldson, M., & Shivji, S. (2018, June 28). Utilizing the quantitative electroencephalograph (qEEG) to objectively document the nature and severity of concussions in junior hockey players: A pilot investigation. Applied Psychophysiology and Biofeedback, 43(3), 211–216. https://doi.org/10.1007/s10484-018-9400-x
Electro-Cap International, Inc. (n.d.). Electro-Cap 19-channel system [Apparatus].
Fickling, S. D., Smith, A. M., Pawlowski, G., Hajra, S. G., Liu, C. C., Farrell, K., Jorgensen, J., Song, X., Stuart, M. J., & D’Arcy, R. C. (2019). Brain vital signs detect concussion-related neurophysiological impairments in ice hockey. Brain, 142(2), 255–262. https://doi.org/10.1093/brain/awy317
Garey, L. J. (2010). Brodmann's localisation in the cerebral cortex (3rd ed.) (L. J. Garey, Trans.). Springer.
Gioia, G., Collins, M., & Isquith, P. (2008). Improving identification and diagnosis of mild traumatic brain injury with evidence: Psychometric support for the acute concussion evaluation. The Journal of Head Trauma Rehabilitation, 23(4), 230–242. https://doi.org/10.1097/01.HTR.0000327255.38881.ca
Giza, C., & Hovda, D. (2014, October). The new neurometabolic cascade of concussion. Neurosurgery Supplement, 75(4), S24–S33. https://doi.org/10.1227/NEU.0000000000000505
Hagemann, D. (2004). Individual differences in anterior EEG asymmetry: Methodological problems and solutions. Biological Psychology, 67(1–2), 157–182. https://doi.org/10.1016/j.biopsycho.2004.03.006
Haider, M. N., Leddy, J. J., Pavlesen, S., Kluczynski, M., Baker, J. G., Miecznikowski, J. C., & Willer, B. S. (2017, July 22). A systematic review of criteria used to define recovery from sport-related concussion in youth athletes. British Journal of Sports Medicine, 52(18), 1179–1190. https://doi.org/10.1136/bjsports-2016-096551
Hanley, D., Prichep, L. S., Badjatia, N., Bazarian, J., Chiacchierini, R., Curley, K. C., Garrett, J., Jones, E., Naunheim, R., O'Neil, B., O'Neill, J., Wright, D. W., & Huff, J. S. (2018, January 1). A brain electrical activity electroencephalographic-based biomarker of functional impairment in traumatic brain injury: A multi-site validation trial. Journal of Neurotrauma, 35(1), 41–47. https://doi.org/10.1089/neu.2017.5004
Hanley, D., Prichep, L. S., Bazarian, J., Huff, J. S., Naunheim, R., Garrett, J., Jones, E. B., Wright, D. W., O'Neill, J., Badjatia, N., Gandhi, D., Curley, K. C., Chiacchierini, R., O'Neil, B., & Hack, D. C. (2017, May). Emergency department triage of traumatic head injury using a brain electrical activity biomarker: A multisite prospective observational validation trial. Academic Emergency Medicine, 24(5), 617–627. https://doi.org/10.1111/acem.13175
Harmon, K. G., Drezner, J. A., Gammons, M., Guskiewicz, K. M., Halstead, M., Herring, S. A., Kutcher, J. S., Pana, A., Putukian, M., & Roberts, W. O. (2013). American Medical Society for Sports Medicine position statement: Concussion in sport. British Journal of Sports Medicine, 47(1), 15–26. https://doi.org/10.1136/bjsports-2012-091941
Hindriks, R. (2021). Relation between the phase-lag index and lagged coherence for assessing interactions in EEG and MEG data. Neuroimage: Reports, 1(1), Article 100007. https://doi.org/10.1016/j.ynirp.2021.100007
Ianof, J. N. & Anghinah, R. (2017). Traumatic brain injury: An EEG point of view. Dementia & Neuropsychologia, 11(1), 3–5. https://doi.org/10.1590/1980-57642016dn11-010002
IBM Corporation. (2022). SPSS statistical software (Version 29.0.0.0). Armonk, New York.
Jacquin, A., Kanakia, S., Oberly, D., & Prichep, L. (2018). A multimodal biomarker for concussion identification, prognosis, and management. Computers in Biology and Medicine, 102, 95–103. https://doi.org/10.1016/j.compbiomed.2018.09.011
Jelic, V., Johansson, S.-E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., Winblad, B., & Wahlund, L. O. (2000). Quantitative electroencephalography in mild cognitive impairment: Longitudinal changes and possible prediction of Alzheimer's disease. Neurobiology of Aging, 21(4), 533–540. https://doi.org/10.1016/s0197-4580(00)00153-6
Jelic, V., Shigeta, M., Julin, P., Almkvist, O., Winblad, B., & Wahlund, L.-O. (1996). Quantitative electroencephalography power and coherence in Alzheimer's disease and mild cognitive impairment. Dementia, 7(6), 314–323. https://doi.org/10.1159/000106897
Kelly, K. D., Lissel, H. L., Rowe, B. H., Vincenten, J. A., & Voaklander, D. C. (2001). Sport and recreation-related head injuries treated in the emergency department. Clinical Journal of Sport Medicine, 11(2), 77–81. https://doi.org/10.1097/00042752-200104000-00003
Kuang, Y., Wu, Z., Xia, R., Li, X., Liu, J., Dai, Y., Wang, D., & Chen, S. (2022). Phase lag index of resting-state EEG for identification of mild cognitive impairment patients with type 2 diabetes. Brain Sciences, 12(10), Article 1399. https://doi.org/10.3390/brainsci12101399
Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: A brief overview. Journal of Head Trauma Rehabilitation, 21(5), 375–378. https://doi.org/10.1097/00001199-200609000-00001
Lew, H. L., Thomander, D., Chew, K. T. L., & Bleiberg, J. (2007). Review of sports-related concussion: Potential for application in military settings. Journal of Rehabilitation Research & Development, 44(7), 963–974. https://doi.org/10.1682/jrrd.2006.12.0169
Lewine, J. D., Plis, S., Ulloa, A., Williams, C., Spitz, M., Foley, J., Paulson, K., Davis, J., Bangera, N., Snyder, T., & Weaver, L. (2019). Quantitative EEG biomarkers for mild traumatic brain injury. Journal of Clinical Neurophysiology, 36(4), 298–305. https://doi.org/10.1097/WNP.0000000000000588
Liu, B., Tian, Y., Zhang, Y., & Zhang, W. (2008). Therapeutic effect analysis of acute traumatic brain injuries. Neurological Research, 30(6), 594–597. https://doi.org/10.1179/174313208X310296
Logan, B. W., Goldman, S., Zola, M., & Mackey, A. (2013). Concussive brain injury in the military: September 2001 to the present. Behavioral Sciences & the Law, 31(6), 803–813. https://doi.org/10.1002/bsl.2092
Lovell, M., Iverson, G., Collins, M., Podell, K., Johnston, K., Pardini, J., Norwig, J., & Maroon, J. (2006). Measurement of symptoms following sports-related concussion: Reliability and normative data for the post-concussion scale. Applied Neuropsychology, 13(3), 166–174. https://doi.org/10.1207/s15324826an1303_4
Lubar, J. (1997). Neocortical dynamics: Implications for understanding the role of neurofeedback and related techniques for the enhancement of attention. Applied Psychophysiology and Biofeedback, 22(2), 111–126. https://doi.org/10.1023/a:1026276228832
Marshall, K. R., Holland, S. L., Meyer, K. S., Martin, E. M., Wilmore, M., & Grimes, J. B. (2012). Mild traumatic brain injury screening, diagnosis, and treatment. Military Medicine, 177(8), 67–75. https://doi.org/10.7205/milmed-d-12-00110
McCrory, P., Meeuwisse, W., Dvorak, J., Aubry, M., Bailes, J., Broglio, S., Cantu, R. C., Cassidy, D., Echemendia, R. J., Castellani, R. J., Davis, G. A., Ellenbogen, R., Emery, C., Engebretsen, L., Feddermann-Demont, N., Giza, C. C., Guskiewicz, K. M., Herring, S., Iverson, G. L., … Vos, P. E. (2017). Consensus statement on concussion in sport - The 5th international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine, 51(11), 838–847. https://doi.org/10.1136/bjsports-2017-097699
McLeod, T. C. V., & Leach, C. (2012). Psychometric properties of self-report concussion scales and checklists. Journal of Athletic Training, 47(2), 221–223. https://doi.org/10.4085/1062-6050-47.2.221
McLoughlin, G., Makeig, S., & Tsuang, M. (2014). In search of biomarkers in psychiatry: EEG-based measures of brain function. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165(2), 111–121. https://doi.org/10.1002/ajmg.b.32208
Merritt, J. L. (2023). Value of quantitative electroencephalography in diagnosis and management of mild to moderate traumatic brain injury: Case series of 150 football players with multiple concussions. IntechOpen. https://doi.org/10.5772/intechopen.109310
Mitsar, Ltd. (n.d.). Mitsar EEG 201 system [Apparatus].
Moretti, D. V. (2015, March 20). Theta and alpha EEG frequency interplay in subjects with mild cognitive impairment: Evidence from EEG, MRI, and SPECT brain modifications. Frontiers in Aging Neuroscience, 7(31), Article 31. https://doi.org/10.3389/fnagi.2015.00031
Mustafi, S. M., Harezlak, J., Koch, K. M., Nencka, A. S., Meier, T. B., West, J. D., Giza, C. C., DiFiori, J. P., Guskiewicz, K. M., Mihalik, J. P., LaConte, S. M., Duma, S. M., Broglio, S. P., Saykin, A. J., McCrea, M., McAllister, T. W. & Wu, Y.-C. (2018, November 15). Acute white-matter abnormalities in sports-related concussion: A diffusion tensor imaging study from the NCAA-DoD CARE Consortium. Journal of Neurotrauma, 35(22), 2653–2664. https://doi.org/10.1089/neu.2017.5158
Pagano, R. R. (2010). Understanding statistics in the behavioral sciences. Wadsworth.
Pfister, T., Pfister, K., Hagel, B., Ghali, W. A., & Ronksley, P. E. (2016). The incidence of concussion in youth sports: A systematic review and meta-analysis. British Journal of Sports Medicine, 50(5), 292–297. https://doi.org/10.1136/bjsports-2015-094978
Popa, L., Dragos, H., Pantelemon, C., Rosu, O., & Strilciuc, S. (2020, January-March). The role of quantitative EEG in the diagnosis of neuropsychiatric disorders. Journal of Medicine and Life, 13(1), 8–15. https://doi.org/10.25122/jml-2019-0085
Pourmand, R. (1994). The significance of amplitude asymmetry in clinical electroencephalography. Clinical Electroencephalography, 25(2), 76–80. https://doi.org/10.1177/155005949402500208
Seifert, T., & Shipman, V. (2015). The pathophysiology of sport concussion. Current Pain and Headache Reports, 19(8), Article 36. https://doi.org/10.1007/s11916-015-0513-0
Seneviratne, U., Hepworth, G., Cook, M., & D'Souza, W. (2016). Atypical EEG abnormalities in genetic generalized epilepsies. Clinical Neurophysiology, 127(1), 214–220. https://doi.org/10.1016/j.clinph.2015.05.031
Slobounov, S., Sebastianelli, W., & Hallett, M. (2012, September). Residual brain dysfunction observed one year post-mild traumatic brain injury: Combined EEG and balance study. Clinical Neurophysiology, 123(9), 1755–1761. https://doi.org/10.1016/j.clinph.2011.12.022
Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28, 1178–1193. https://doi.org/10.1002/hbm.20346
Strobos, R. J. (1960). Significance of amplitude asymmetry in the electroencephalogram. Neurology, 10(8), 799–803. https://doi.org/10.1212/wnl.10.8.799
Svetlov, S., Prima, V., Zhang, Z., Curley, K., Kobeissey, F., Moghieb, A., & Wang, K. K. W. (2015). Acute and subacute differential gene expression in rat midbrain following blast exposure compared to mechanical brain trauma. Journal of Neurology and Neurobiology, 1(1), 1–8. https://doi.org/10.16966/2379-7150.103
Swanson, T. M., Isaacson, B. M., Cyborski, C. M., French, L. M., Tsao, J. W., & Pasquina, P. F. (2017). Traumatic brain injury incidence, clinical overview, and policies in the US military health system since 2000. Public Health Reports, 132(2), 251–259. https://doi.org/10.1177/0033354916687748
Teel, E. F., Ray, W. J., Geronimo, A. M., & Slobounov, S. M. (2014). Residual alterations of brain electrical activity in clinically asymptomatic concussed individuals: An EEG study. Clinical Neurophysiology, 125(4), 703–707. https://doi.org/10.1016/j.clinph.2013.08.027
Tenney, J. R., Gloss, D., Arya, R., Kaplan, P. W., Lesser, R., Sexton, V., & Nuwer, M. (2021). Practice guideline: Use of quantitative EEG for the diagnosis of mild traumatic brain injury: Report of the guideline committee of the American Clinical Neurophysiology Society. Journal of Clinical Neurophysiology, 38(4), 287–292. https://doi.org/10.1097/WNP.0000000000000853
Thatcher, R. W. (2009). EEG evaluation of traumatic brain injury and EEG biofeedback treatment. In T. Budzynski, H. Budzynski, J. Evans, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications. Academic Press.
Thatcher, R. W. (2012). Coherence, phase differences, phase shift, and phase lock in EEG/ERP analyses. Developmental Neuropsychology, 37(6), 476–496. https://doi.org/10.1080/87565641.2011.619241
Thatcher, R. W. (2016). Handbook of quantitative electroencephalography and EEG biofeedback. Anipublishing Co.
Thatcher, R., Biver, R., McAlaster, R., & Salazar, A. (1998). Biophysical linkage between MRI and EEG coherence in closed head injury. NeuroImage, 8(4), 307–326. https://doi.org/10.1006/nimg.1998.0365
Thatcher, R., Biver, C., & North, D. (2009, December 27). EEG and brain connectivity: A tutorial. Scientific Articles. https://appliedneuroscience.com
Thatcher, R., Cantor, D., McAlaster, R., Geisler, F., & Krause, P. (1991). Comprehensive predictions of outcome in closed head-injured patients: The development of prognostic equations. Annals of the New York Academy of Sciences, 620(1), 82–101. https://doi.org/10.1111/j.1749-6632.1991.tb51576.x
Thatcher, R. W., Krause, P., & Hrybyk, M. (1986). Cortico-cortico associations and EEG coherence: A two-compartmental model. Electroencephalography and Clinical Neurophysiology, 64(2), 123–143. https://doi.org/10.1016/0013-4694(86)90107-0
Thatcher, R. W., & Lubar, J. (2009). History of the scientific standards of QEEG normative databases. In T. Budzinsky, H. Budzinski, J. Evans, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications. Academic Press.
Thatcher, R. W., North, D., & Biver, C. (2005). EEG and intelligence: Relations between EEG coherence, EEG phase delay and power. Clinical Neurophysiology, 116(9), 2129–2141. https://doi.org/10.1016/j.clinph.2005.04.026
Thatcher, R. W., North, D., & Biver, C. (2008). Intelligence and EEG phase reset: A two compartment model of phase shift and lock. NeuroImage, 42(4), 1639–1653. https://doi.org/10.1016/j.neuroimage.2008.06.009
Thatcher, R. W., North, D. M., Curtin, R. T., Walker, R. A., Biver, C. J., Gomez, J. F., & Salazar, A. M. (2001, Winter). An EEG severity index of traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 77–87. https://doi.org/10.1176/jnp.13.1.77
Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. H. (1989). EEG discriminant analyses of mild head trauma. Electroencephalography and Clinical Neurophysiology, 73(2), 94–106. https://doi.org/10.1016/0013-4694(89)90188-0
The TOVA Company. (2024). Test of variables of attention. https://tovatest.com
Thompson, J., Sebastianelli, W., & Slobounov, S. (2005). EEG and postural correlates of mild traumatic brain injury in athletes. Neuroscience Letters, 377(3), 158–163. https://doi.org/10.1016/j.neulet.2004.11.090
Toshkezi, G., Kyle, M., Longo, S., Chin, L., & Zhao, L.-R. (2018, November). Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. Journal of Neurosurgery JNS, 129(5), 1286–1294. https://doi.org/10.3171/2017.7.JNS17878
Trans Cranial Technologies. (2012). Cortical functions. Trans Cranial Technologies, Ltd.
Trudeau, D. L., Anderson, J., Hansen, L.M., Shagalov, D.N., Schmoller, J., Nugent, S., & Barton, S. (1998). Findings of mild traumatic brain injury in combat veterans with PTSD and a history of blast concussion. The Journal of Neuropsychiatry, 10(3), 308–313. https://doi.org/10.1176/jnp.10.3.308
Tshibanda, L., Vanhaudenhuyse, A., Galanaud, D., Boly, M., Laureys, S., & Puybasset, L. (2009). Magnetic resonance spectroscopy and diffusion tensor imaging in coma survivors: Promises and pitfalls. Progress in Brain Research, 177, 215–229. https://doi.org/10.1016/S0079-6123(09)17715-4
Wallace, B., Wagner, A., Wagner, E., & McDeavitt, J. (2001). A history and review of quantitative electroencephalography in traumatic brain injury. Journal of Head Trauma and Rehabilitation, 16(2), 165–190. https://doi.org/10.1097/00001199-200104000-00006
Weiss, N., Galanaud, D., Carpentier, A., Naccache, L., & Puybasset, L. (2007, October). Clinical review: Prognostic value of magnetic resonance imaging in acute brain injury and coma. Critical Care, 11(5), Article 230. https://doi.org/10.1186/cc6107
Wilde, E. A., Goodrich-Hunsaker, N. J., Ware, A. L., Taylor, B. A., Biekman, B. D., Hunter, J. V., Newman-Norlund, R., Scarneo, S., Casa, D. J., & Levin, H. S. (2020, October 1). Diffusion tensor imaging indicators of white matter injury are correlated with a multimodal electroencephalography-based biomarker in slow recovering, concussed collegiate athletes. Journal of Neurotrauma, 37(19), 2093–2101. https://doi.org/10.1089/neu.2018.6365
Wright, D. W., Kellermann, A., McGuire, L. C., Chen, B., & Popovic, T. (2013, July 12). CDC grand rounds: Reducing traumatic brain injury in the United States. MMWR: Morbidity Mortality Weekly Report, 62(27), 549–552.
Zhang, A. L., Sing, D. C., Rugg, C. M., Feeley, B. T., & Senter, C. (2016). The rise of concussions in the adolescent population. Orthopaedic Journal of Sports Medicine, 4(8), 1–7. https://doi.org/10.1177/2325967116662458
Zuckerman, S. L., Kerr, Z. Y., Yengo-Kahn, A., Wasserman, E., Covassin, T., & Soloman, G. S. (2015). Epidemiology of sports-related concussion in NCAA athletes from 2009-2010 to 2013-2014: Incidence, recurrence, and mechanisms. The American Journal of Sports Medicine, 43(11), 2654–2662. https://doi.org/10.1177/0363546515599634
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Larry C Stevens, John Heick, Scot Raab, Chad Woodruff, Rogelio Hueso Martinez, Scott Janetsky, Jared Carmichael, Gabrielle Burchett, Miracle Macias, Genesys Mederos, Alyssa Ragan, Yesaan Rodreguez, Breanna Cason, Rylee Dunn, Alexis Eisenbrey, Sasha Fernandez, Kelsey King, Elliot Yount, Kira Sapach, Amber Schnepp, Dina Ross, Krystina Vargas, Kathleen Wasserman, Annalene Thompson, Kinsey Ellis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).