The Confluence of Genetic Factors and Neurotransmitter Dysregulation in Schizophrenia: A Comprehensive Review

Authors

  • Maithilee Chaudhary GN Ramachandran Protein Centre, CSIR – IMTECH, Chandigarh, 160036 140413, India
  • Dr. Preeti Solanki Chandigarh University, Mohali https://orcid.org/0000-0001-9443-8975
  • Dr. Varshika Singh University Institute of Biotechnology, Chandigarh University Mohali, Punjab 140413, India

DOI:

https://doi.org/10.15540/nr.11.2.191

Keywords:

Schizophrenia, Neurotransmitters, cognitive neuroscience

Abstract

Schizophrenia is a psychiatric condition characterized by a profound mental illness that impairs an individual's capacity to function in both social and cognitive domains. Individuals diagnosed with schizophrenia display psychopathological symptoms that are categorized as positive, negative, and cognitive. According to some estimates, nearly 98% of people with schizophrenia have cognitive deficits and perform below their expected cognitive capacity, which depends on their premorbid intelligence and parental educational attainment. Schizophrenia affects approximately 24 million individuals worldwide, which translates to a prevalence rate of 0.32%, or 1 in 300 people. In the interim, the prevalence of the condition among adults is 0.45% or 1 in 222 individuals. The heritability of schizophrenia is widely recognized to be significant, ranging from 60% to 90%. As a result, identifying specific risk genes is crucial for comprehending this disorder's underlying causes and physiological mechanisms. The pathophysiology of schizophrenia involves the dysregulation of various neurotransmitters and the pathways associated with it, various environmental factors, and heredity are also associated with it. Dopamine and other neurotransmitters associated with it like serotonin, glutamine et cetera have been the main drug targets of schizophrenia. The purpose of this review is to offer a comprehensive understanding of the etiology, pathophysiological mechanisms, and manifestations of schizophrenia. Overall, there is still insufficient evidence to prove the underlying cause of the pathogenesis of schizophrenia. Nonetheless, it is important to recognize the unknown and unidentified reasons underlying schizophrenia.

Author Biographies

Maithilee Chaudhary, GN Ramachandran Protein Centre, CSIR – IMTECH, Chandigarh, 160036 140413, India

Dissertation student

Dr. Preeti Solanki, Chandigarh University, Mohali

Associate Professor

University Center for Research and Development

University Institute of Biotechnology

Chandigarh University, Mohali

Punjab - 140413, India

Dr. Varshika Singh, University Institute of Biotechnology, Chandigarh University Mohali, Punjab 140413, India

Assistant Professor

References

Adell, A. (2020). Brain NMDA receptors in schizophrenia and depression. Biomolecules, 10(6), 947. https://doi.org/10.3390/biom10060947

Andreasen, N. C., Nopoulos, P., Schultz, S. K., Miller, D. D., Gupta, S., Swayze, V. W., & Flaum, M. (1994). Positive and negative symptoms of schizophrenia: past, present, and future. Acta Psychiatrica Scandinavica, 90(s384), 51–59. https://doi.org/10.1111/j.1600-0447.1994.tb05891.x

Amin, H., Parikh, P. K., & Ghate, M. (2021). Medicinal chemistry strategies for the development of phosphodiesterase 10A (PDE10A) inhibitors - An update of recent progress. European Journal of Medicinal Chemistry, 214, 113155. https://doi.org/10.1016/j.ejmech.2021.113155

Ashton, A., & Jagannath, A. (2020). Disrupted sleep and circadian rhythms in schizophrenia and their interaction with dopamine signaling. Frontiers in Neuroscience, 14, 636. https://doi.org/10.3389/fnins.2020.00636

Balu, D. T. (2016). The NMDA receptor and schizophrenia: from pathophysiology to treatment. In Advances in Pharmacology 76, 351–382. https://doi.org/10.1016/bs.apha.2016.01.006

Bansal, V., & Chatterjee, I. (2021). Role of neurotransmitters in schizophrenia: a comprehensive study. Kuwait Journal of Science, 48(2). https://doi.org/10.48129/kjs.v48i2.9264

Beck, A., Baker, A., & Todd, J. (2015). Smoking in schizophrenia: cognitive impact of nicotine and relationship to smoking motivators. Schizophrenia Research: Cognition, 2(1), 26–32. https://doi.org/10.1016/j.scog.2014.12.001

Benros, M. E., & Mortensen, P. B. (2019). Role of Infection, Autoimmunity, Atopic Disorders, and the Immune System in Schizophrenia: Evidence from Epidemiological and Genetic Studies. In Current topics in behavioral neurosciences (pp. 141–159). https://doi.org/10.1007/7854_2019_93

Best, M. W., & Bowie, C. R. (2017). A review of cognitive remediation approaches for schizophrenia: from top-down to bottom-up, brain training to psychotherapy. Expert Review of Neurotherapeutics, 17(7), 713–723. https://doi.org/10.1080/14737175.2017.1331128

Bhat, L., Cantillon, M., & Ings, R. M. J. (2018). Brilaroxazine (RP5063) Clinical Experience in Schizophrenia: “A New Option to Address Unmet Needs.” Journal of Neurology & Neuromedicine, 3(5), 39–50. https://doi.org/10.29245/2572.942x/2018/5.1225

Biedermann, F., & Fleischhacker, W. W. (2016). Psychotic disorders in DSM-5 and ICD-11. CNS Spectrums, 21(4), 349–354. https://doi.org/10.1017/s1092852916000316

Bitter, I., Groc, M., Delsol, C., Fabre, C., Fagard, M., Barthe, L., Gaudoux, F., Brunner, V., Brackman, F., & Tonner, F. (2017). Efficacy of F17464, a new preferential D3 antagonist in a placebo-controlled phase 2 study of patients with an acute exacerbation of schizophrenia. European Psychiatry, 41(S1), S387. https://doi.org/10.1016/j.eurpsy.2017.02.428

Blackwood, D., Fordyce, A., Walker, M., St Clair, D. M., Porteous, D. J., & Muir, W. (2001). Schizophrenia and Affective Disorders—Co-segregation with a Translocation at Chromosome 1q42 That Directly Disrupts Brain-Expressed Genes: Clinical and P300 Findings in a Family. American Journal of Human Genetics, 69(2), 428–433. https://doi.org/10.1086/321969

Blay, M., Adam, O., Bation, R., Galvao, F., Brunelin, J., & Mondino, M. (2021). Improvement of Insight with Non-Invasive Brain Stimulation in Patients with Schizophrenia: A Systematic Review. Journal of Clinical Medicine, 11(1), 40. https://doi.org/10.3390/jcm11010040

Boyd-Kimball, D., Gonczy, K., Lewis, B. F., Mason, T. J., Siliko, N., & Wolfe, J. (2018). Classics in chemical neuroscience: Chlorpromazine. ACS Chemical Neuroscience, 10(1), 79–88. https://doi.org/10.1021/acschemneuro.8b00258

Bruijnzeel, D., Suryadevara, U., & Tandon, R. (2014). Antipsychotic treatment of schizophrenia: An update. Asian Journal of Psychiatry, 11, 3–7. https://doi.org/10.1016/j.ajp.2014.08.002

Castner, S. A., Murthy, N. V., Ridler, K., Herdon, H. J., Roberts, B. M., Weinzimmer, D., Huang, Y., Zheng, M., Rabiner, E. A., Gunn, R. N., Carson, R. E., Williams, G. V., & Laruelle, M. (2014). Relationship Between Glycine Transporter 1 Inhibition as Measured with Positron Emission Tomography and Changes in Cognitive Performances in Nonhuman Primates. Neuropsychopharmacology, 39(12), 2742–2749. https://doi.org/10.1038/npp.2014.4

Cho, S., Lee, J., & Kang, S. (2016). Low d-serine levels in schizophrenia: A systematic review and meta-analysis. Neuroscience Letters, 634, 42–51. https://doi.org/10.1016/j.neulet.2016.10.006

Citrome, L. (2011). Lurasidone for schizophrenia: A Brief Review of a New Second-Generation Antipsychotic. Clinical Schizophrenia & Related Psychoses, 4(4), 251–257. https://doi.org/10.3371/csrp.4.4.5

Citrome, L. (2016). Cariprazine for the Treatment of Schizophrenia: A Review of this Dopamine D3-Preferring D3/D2 Receptor Partial Agonist. Clinical Schizophrenia & Related Psychoses, 10(2), 109–119. https://doi.org/10.3371/1935-1232-10.2.109

Clelland, J. D., Read, L. L., Drouet, V., Kaon, A., Kelly, A., Duff, K., Nadrich, R. H., Rajparia, A., & Clelland, C. L. (2014). Vitamin D insufficiency and schizophrenia risk: Evaluation of hyperprolinemia as a mediator of association. Schizophrenia Research, 156(1), 15–22. https://doi.org/10.1016/j.schres.2014.03.017

Cosi, C., Martel, J., Auclair, A., Collo, G., Cavalleri, L., Heusler, P., Leriche, L., Gaudoux, F., Sokoloff, P., Moser, P., & Gatti-McArthur, S. (2021). Pharmacology profile of F17464, a dopamine D3 receptor preferential antagonist. European Journal of Pharmacology, 890, 173635. https://doi.org/10.1016/j.ejphar.2020.173635

Cosi, C., Nguyen, V., Consul-Denjean, N., Auclair, A., Heusler, P., Martel, J., Leriche, L., Sokoloff, P., & Gatti-McArthur, S. (2017). F17464 a new antipsychotic with preferential D3 antagonist, 5-HT1A partial agonist properties. Neurochemical studies. European Psychiatry, 41(S1), s807. https://doi.org/10.1016/j.eurpsy.2017.01.1562

Correll, C. U., & Schooler, N. R. (2020).

Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment

Neuropsychiatric Disease and Treatment, Volume 16, 519–534. https://doi.org/10.2147/ndt.s225643

Dahoun, T., Trossbach, S. V., Brandon, N. J., Korth, C., & Howes, O. (2017). The impact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Translational Psychiatry, 7(1), e1015. https://doi.org/10.1038/tp.2016.282

Degenhardt, F. (2020). Update on the genetic architecture of schizophrenia. Medizinische Genetik, 32(1), 19–24. https://doi.org/10.1515/medgen-2020-2009

Devoe, D., Liu, L., Cadenhead, K., Cannon, T. D., Cornblatt, B. A., McGlashan, T. H., Perkins, D. O., Seidman, L. J., Tsuang, M. T., Walker, E. F., Woods, S. W., Bearden, C. E., Mathalon, D. H., & Addington, J. (2019). S21. The impact of persistent negative symptoms on functioning and defeatist beliefs in youth at clinical high risk for psychosis. Schizophrenia Bulletin. 45(Suppl 2), S313-S313. https://doi.org/10.1093/schbul/sbz020.566

Dollfus, S., & Lyne, J. (2017). Negative symptoms: History of the concept and their position in diagnosis of schizophrenia. Schizophrenia Research, 186, 3–7. https://doi.org/10.1016/j.schres.2016.06.024

Domschke, K., Lawford, B. R., Young, R. M., Voisey, J., Morris, C. P., Roehrs, T., Hohoff, C., Birosova, E., Arolt, V., & Baune, B. T. (2011). Dysbindin (DTNBP1) – A role in psychotic depression? Journal of Psychiatric Research, 45(5), 588–595. https://doi.org/10.1016/j.jpsychires.2010.09.014

Egerton, A., Grace, A. A., Stone, J., Bossong, M. G., Sand, M., & McGuire, P. (2020). Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophrenia Research, 223, 59–70. https://doi.org/10.1016/j.schres.2020.09.013

Eggers, A. E. (2013). A serotonin hypothesis of schizophrenia. Medical Hypotheses, 80(6), 791–794. https://doi.org/10.1016/j.mehy.2013.03.013

Fellner, C. (2017). New schizophrenia treatments address unmet clinical needs. PubMed, 42(2), 130–134. https://pubmed.ncbi.nlm.nih.gov/28163559

Frohlich, J., & Van Horn, J. D. (2013). Reviewing the ketamine model for schizophrenia. Journal of Psychopharmacology, 28(4), 287–302. https://doi.org/10.1177/0269881113512909

Fulford, D., & Holt, D. J. (2023). Social withdrawal, loneliness, and health in schizophrenia: Psychological and neural mechanisms. Schizophrenia Bulletin, 49(5), 1138–1149. https://doi.org/10.1093/schbul/sbad099

Gaebel, W., Kerst, A., & Stricker, J. (2020). Classification and diagnosis of schizophrenia or other primary psychotic disorders: changes from icd-10 to icd-11 and implementation in clinical practice. Psychiatria Danubina, 32(3–4), 320–324. https://doi.org/10.24869/psyd.2020.320

Gainsford, K., Fitzgibbon, B. M., Fitzgerald, P. B., & Hoy, K. E. (2020). Transforming treatments for schizophrenia: Virtual reality, brain stimulation and social cognition. Psychiatry Research-neuroimaging, 288, 112974. https://doi.org/10.1016/j.psychres.2020.112974

Garnock-Jones, K. P. (2017). Cariprazine: A review in schizophrenia. CNS Drugs, 31(6), 513–525. https://doi.org/10.1007/s40263-017-0442-z

Ghasemvand, F., Omidinia, E., Salehi, Z., & Rahmanzadeh, S. (2015). Relationship between polymorphisms in the proline dehydrogenase gene and schizophrenia risk. Genetics and Molecular Research, 14(4), 11681–11691. https://doi.org/10.4238/2015.october.2.1

Giusti-Rodríguez, P., & Sullivan, P. F. (2013). The genomics of schizophrenia: update and implications. Journal of Clinical Investigation, 123(11), 4557–4563. https://doi.org/10.1172/jci66031

González-Castro, T. B., Hernandez-Diaz, Y., Juárez-Rojop, I. E., López-Narváez, M. L., Tovilla-Zárate, C. A., Genis-Mendoza, A., & Alpuin-Reyes, M. (2016). The role of C957T, TaqI and Ser311Cys polymorphisms of the DRD2 gene in schizophrenia: systematic review and meta-analysis. Behavioral and Brain Functions, 12(1), 1-14. https://doi.org/10.1186/s12993-016-0114-z

Gozzi, A., Large, C. H., Schwarz, A. J., Bertani, S., Crestan, V., & Bifone, A. (2007). Differential effects of antipsychotic and glutamatergic agents on the PHMRI response to phencyclidine. Neuropsychopharmacology, 33(7), 1690–1703. https://doi.org/10.1038/sj.npp.1301547

Guan, F., Ni, T., Zhu, W., Williams, L. K., Cui, L., Li, M., Tubbs, J. D., Sham, P., & Gui, H. (2021). Integrative omics of schizophrenia: from genetic determinants to clinical classification and risk prediction. Molecular Psychiatry, 27(1), 113–126. https://doi.org/10.1038/s41380-021-01201-2

Hany, M. (2023, March 20). Schizophrenia. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK539864/

Hashimoto, K. (2011). Glycine transporter-1: a new potential therapeutic target for schizophrenia. Current Pharmaceutical Design, 17(2), 112–120. https://doi.org/10.2174/138161211795049598

Homayoun, H., & Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. The Journal of Neuroscience, 27(43), 11496–11500. https://doi.org/10.1523/jneurosci.2213-07.2007

Horikoshi, S., Shiga, T., Hoshino, H., Ochiai, H., Kanno-Nozaki, K., Kanno, K., ... & Yabe, H. (2019). The Relationship between Mismatch Negativity and the COMT Val108/158Met Genotype in Schizophrenia. Neuropsychobiology, 77(4), 192-196. https://doi.org/10.1159/000493738

Howes, O., & Kapur, S. (2009a). The Dopamine Hypothesis of Schizophrenia: Version III--The Final common Pathway. Schizophrenia Bulletin, 35(3), 549–562. https://doi.org/10.1093/schbul/sbp006

Howes, O., & Kapur, S. (2009b). The Dopamine Hypothesis of Schizophrenia: Version III--The Final common Pathway. Schizophrenia Bulletin, 35(3), 549–562. https://doi.org/10.1093/schbul/sbp006

Hsu, W., Lane, H., & Lin, C. (2017). Brexpiprazole for the treatment of schizophrenia. Expert Opinion on Pharmacotherapy, 18(2), 217–223. https://doi.org/10.1080/14656566.2016.1274972

ICD-11. (n.d.). https://icd.who.int/

Jones, C. K., Byun, N., & Bubser, M. (2011). Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology, 37(1), 16–42. https://doi.org/10.1038/npp.2011.199

Kantrowitz, J. T. (2020). Targeting serotonin 5-HT2A receptors to better treat schizophrenia: Rationale and current approaches. CNS Drugs, 34(9), 947–959. https://doi.org/10.1007/s40263-020-00752-2

Kaur, G., Chavan, B., Gupta, D., Sinhmar, V., Prasad, R., Tripathi, A., Garg, P. D., Gupta, R. K., Khurana, H., Gautam, S., Margoob, M. A., & Aneja, J. (2019). An association study of dopaminergic (DRD2) and serotoninergic (5-HT2) gene polymorphism and schizophrenia in a North Indian population. Asian Journal of Psychiatry, 39, 178–184. https://doi.org/10.1016/j.ajp.2018.10.022

Kesby, J. P., Eyles, D. W., McGrath, J. J., & Scott, J. G. (2018). Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Translational Psychiatry, 8(1), 30. https://doi.org/10.1038/s41398-017-0071-9

Khan, Z. U., Martín-Montañez, E., & Muly, E. C. (2013). Schizophrenia: causes and treatments. Current Pharmaceutical Design, 19(36), 6451–6461. https://doi.org/10.2174/1381612811319360006

Khokhar, J. Y., Dwiel, L. L., Henricks, A. M., Doucette, W., & Green, A. I. (2018). The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophrenia Research, 194, 78–85. https://doi.org/10.1016/j.schres.2017.04.016

Kikuchi, T. (2020). Is memantine effective as an NMDA receptor antagonist in adjunctive therapy for schizophrenia? Biomolecules, 10(8), 1134. https://doi.org/10.3390/biom10081134

Kruse, A., & Bustillo, J. (2022). Glutamatergic dysfunction in Schizophrenia. Translational Psychiatry, 12(1), 500. https://doi.org/10.1038/s41398-022-02253-w

Kuo, C., Lin, C., & Lane, H. (2022). Targeting D-Amino acid oxidase (DAAO) for the treatment of schizophrenia: Rationale and current status of research. CNS Drugs, 36(11), 1143–1153. https://doi.org/10.1007/s40263-022-00959-5

Laszlovszky, I., Born, C., & Németh, G. (2021). Cariprazine, A Broad-Spectrum Antipsychotic for the Treatment of Schizophrenia: Pharmacology, Efficacy, and Safety. Advances in Therapy, 38(7), 3652–3673. https://doi.org/10.1007/s12325-021-01797-5

Laursen, T. M., Nordentoft, M., & Mortensen, P. B. (2014). Excess early mortality in schizophrenia. Annual Review of Clinical Psychology, 10(1), 425–448. https://doi.org/10.1146/annurev-clinpsy-032813-153657

Layton, M. E., Kern, J. C., Hartingh, T. J., Shipe, W. D., Raheem, I. T., Kandebo, M., Hayes, R., Huszar, S. L., Eddins, D., Ma, B., Fuerst, J., Wollenberg, G. K., Li, J., Fritzen, J., McGaughey, G. B., Uslaner, J. M., Smith, S. M., Coleman, P. J., & Cox, C. D. (2023). Discovery of MK-8189, a highly potent and selective PDE10A inhibitor for the treatment of schizophrenia. Journal of Medicinal Chemistry, 66(2), 1157–1171. https://doi.org/10.1021/acs.jmedchem.2c01521

Leucht, S., Tardy, M., Komossa, K., Heres, S., Kissling, W., Salanti, G., & Davis, J. M. (2012). Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. The Lancet, 379(9831), 2063–2071. https://doi.org/10.1016/s0140-6736(12)60239-6

Liu, C., Liu, Y. L., Hwu, H., Fann, C. S., Yang, U. C., Hsu, P. C., Chang, C., Chen, W., Hwang, T., Hsieh, M. H., Liu, C., Chien, Y., Lin, Y., & Tsuang, M. T. (2019). Genetic associations and expression of extra-short isoforms of disrupted-in-schizophrenia 1 in a neurocognitive subgroup of schizophrenia. Journal of Human Genetics, 64(7), 653–663. https://doi.org/10.1038/s10038-019-0597-1

Liu, Q. Q., Yao, X. X., Gao, S. H., Li, R., Li, B. J., Yang, W., & Cui, R. (2020). Role of 5-HT receptors in neuropathic pain: potential therapeutic implications. Pharmacological Research, 159, 104949. https://doi.org/10.1016/j.phrs.2020.104949

Llorca, P., Pereira, B., Jardri, R., Chereau-Boudet, I., Brousse, G., Misdrahi, D., Fénelon, G., Tronche, A., Schwan, R., Lançon, C., Marques, A., Ulla, M., Derost, P., Debilly, B., Durif, F., & De Chazeron, I. (2016). Hallucinations in schizophrenia and Parkinson’s disease: an analysis of sensory modalities involved and the repercussion on patients. Scientific Reports, 6(1), 38152. https://doi.org/10.1038/srep38152

Lobo, M. C., Whitehurst, T., Kaar, S., & Howes, O. (2022). New and emerging treatments for schizophrenia: a narrative review of their pharmacology, efficacy and side effect profile relative to established antipsychotics. Neuroscience & Biobehavioral Reviews, 132, 324–361. https://doi.org/10.1016/j.neubiorev.2021.11.032

Luykx, J. J., Broersen, J. L., & De Leeuw, M. (2017). The DRD2 rs1076560 polymorphism and schizophrenia-related intermediate phenotypes: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 74, 214–224. https://doi.org/10.1016/j.neubiorev.2017.01.006

MacKay, M. B., Kravtsenyuk, M., Thomas, R. K., Mitchell, N., Dursun, S., & Baker, G. B. (2019). D-Serine: potential therapeutic agent and/or biomarker in schizophrenia and depression? Frontiers in Psychiatry, 10, 25. https://doi.org/10.3389/fpsyt.2019.00025

Massoud, S., Salmanian, M., Tabibian, M., Ghamari, R., Ghavami, T. S. T., & Alizadeh, F. (2023). The contribution of the 5-hydroxytryptamine receptor 2 A gene polymorphisms rs6311 and rs6313 to Schizophrenia in Iran. Molecular Biology Reports, 50(3), 2633–2639. https://doi.org/10.1007/s11033-022-08222-2

McCutcheon, R., Keefe, R. S., & McGuire, P. (2023). Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Molecular Psychiatry. https://doi.org/10.1038/s41380-023-01949-9

McCutcheon, R., Krystal, J. H., & Howes, O. (2020). Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry, 19(1), 15–33. https://doi.org/10.1002/wps.20693

McCutcheon, R., Marques, T. R., & Howes, O. (2020). Schizophrenia—An overview. JAMA Psychiatry, 77(2), 201. https://doi.org/10.1001/jamapsychiatry.2019.3360

Mei, Y. Y., Wu, D. C., & Zhou, N. (2018). Astrocytic regulation of glutamate transmission in schizophrenia. Frontiers in Psychiatry, 9, 544. https://doi.org/10.3389/fpsyt.2018.00544

Meli, G., Öttl, B., Paladini, A., & Cataldi, L. (2012). Prenatal and perinatal risk factors of schizophrenia. Journal of Maternal-fetal & Neonatal Medicine, 25(12), 2559–2563. https://doi.org/10.3109/14767058.2012.699118

Meltzer, H. Y., Li, Z., Kaneda, Y., & Ichikawa, J. (2003). Serotonin receptors: their key role in drugs to treat schizophrenia. Progress in Neuro-psychopharmacology & Biological Psychiatry, 27(7), 1159–1172. https://doi.org/10.1016/j.pnpbp.2003.09.010

Menniti, F. S., Chappie, T. A., Humphrey, J. M., & Schmidt, C. J. (2007). Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. PubMed, 8(1), 54–59. https://pubmed.ncbi.nlm.nih.gov/17263185

Molitch, M. E. (2020). Dopamine agonists and antipsychotics. European Journal of Endocrinology, 183(3), C11–C13. https://doi.org/10.1530/eje-20-0607

Mondino, M., Bennabi, D., Poulet, E., Galvao, F., Brunelin, J., & Haffen, E. (2014). Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World Journal of Biological Psychiatry, 15(4), 261–275. https://doi.org/10.3109/15622975.2013.876514

Mosolov, S., & Yaltonskaya, P. A. (2022). Primary and secondary negative symptoms in schizophrenia. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.766692

Nair, P. C., Chalker, J. M., McKinnon, R. A., Langmead, C. J., Gregory, K. J., & Bastiampillai, T. (2022). Trace Amine-Associated Receptor 1 (TAAR1): Molecular and clinical insights for the treatment of schizophrenia and related comorbidities. ACS Pharmacology & Translational Science, 5(3), 183–188. https://doi.org/10.1021/acsptsci.2c00016

Năstase, M. G., Vlaicu, I., & Trifu, S. C. (2022). Genetic polymorphism and neuroanatomical changes in schizophrenia. Romanian Journal of Morphology and Embryology, 63(2), 307–322. https://doi.org/10.47162/rjme.63.2.03

Negrete-Díaz, J. V., Falcón-Moya, R., & Rodríguez-Moreno, A. (2021). Kainate receptors: from synaptic activity to disease. FEBS Journal, 289(17), 5074–5088. https://doi.org/10.1111/febs.16081

Ni, P., & Chung, S. (2020). Mitochondrial dysfunction in schizophrenia. BioEssays, 42(6), 1900202. https://doi.org/10.1002/bies.201900202

O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., Nikolov, I., Hamshere, M. L., Carroll, L., Georgieva, L., Dwyer, S., Holmans, P. A., Marchini, J., Spencer, C. C. A., Howie, B., Leung, H. T., Hartmann, A. M., Möller, H., Morris, D., . . . Kirov, G. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40(9), 1053–1055. https://doi.org/10.1038/ng.201

Padmanabhan, J., & Keshavan, M. S. (2014). Pathophysiology of Schizophrenia. In Schizophrenia: Recent Advances in Diagnosis and Treatment, 35-57. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-0656-7_4

Patel, K. R., Cherian, J., Gohil, K., & Atkinson, D. (2014). Schizophrenia: overview and treatment options. Pharmacy and Therapeutics, 39(9), 638.https://pubmed.ncbi.nlm.nih.gov/25210417

Patel, S., Khan, S., Saipavankumar, M., & Hamid, P. (2020). The Association between cannabis use and schizophrenia: Causative or curative? A systematic review. Cureus. https://doi.org/10.7759/cureus.9309

Pawlak, J., & Zakowicz, P. (2022). Glycine transporters in schizophrenia. a new hope or informational noise? Psychiatria Polska, 56(2), 217–228. https://doi.org/10.12740/pp/onlinefirst/126661

Peiser-Oliver, J. M., Evans, S., Adams, D. J., Christie, M. J., Vandenberg, R. J., & Mohammadi, S. A. (2022). Glycinergic modulation of pain in behavioral animal models. Frontiers in Pharmacology, 13, 860903. https://doi.org/10.3389/fphar.2022.860903

Popovic, D., Schmitt, A., Kaurani, L., Senner, F., Papiol, S., Malchow, B., Fischer, A., Schulze, T. G., Koutsouleris, N., & Falkai, P. (2019). Childhood trauma in Schizophrenia: Current findings and research perspectives. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00274

Pourhamzeh, M., Moravej, F. G., Arabi, M., Shahriari, E., Mehrabi, S., Ward, R. T., Ahadi, R., & Joghataei, M. T. (2021). The roles of serotonin in neuropsychiatric disorders. Cellular and Molecular Neurobiology, 42(6), 1671–1692. https://doi.org/10.1007/s10571-021-01064-9

Quednow, B. B., Geyer, M. A., & Halberstadt, A. L. (2020). Serotonin and schizophrenia. In Handbook of Behavioral Neuroscience, 31, 711–743. https://doi.org/10.1016/b978-0-444-64125-0.00039-6

Recio-Barbero, M., Segarra, R., Zabala, A., Gonzalez-Fraile, E., Gonzalez-Pinto, A., & Ballesteros, J. (2021). Cognitive enhancers in schizophrenia: a systematic review and meta-analysis of alpha-7 nicotinic acetylcholine receptor agonists for cognitive deficits and negative symptoms. Frontiers in Psychiatry, 12, 631589. https://doi.org/10.3389/fpsyt.2021.631589

Rogers, R. D. (2010). The Roles of Dopamine and Serotonin in Decision Making: Evidence from Pharmacological Experiments in Humans. Neuropsychopharmacology, 36(1), 114–132. https://doi.org/10.1038/npp.2010.165

Rosenbrock, H., Desch, M., Kleiner, O., Dorner-Ciossek, C., Schmid, B., Keller, S., Schlecker, C., Moschetti, V., Goetz, S., Liesenfeld, K., Fillon, G., Giovannini, R., Ramael, S., Wunderlich, G., & Wind, S. (2018). Evaluation of Pharmacokinetics and Pharmacodynamics of BI 425809, a novel GLYT1 inhibitor: translational studies. Clinical and Translational Science, 11(6), 616–623. https://doi.org/10.1111/cts.12578

Ross, C. A., Margolis, R. L., Reading, S., Pletnikov, M. V., & Coyle, J. T. (2006). Neurobiology of schizophrenia. Neuron, 52(1), 139–153. https://doi.org/10.1016/j.neuron.2006.09.015

Satiamurthy, R., Yaakob, N. S., Shahb, N. M., Azmi, N., & Omar, M. S. (2023). Potential roles of 5-HT3 receptor antagonists in reducing chemotherapy-induced peripheral neuropathy (CIPN). Current Molecular Medicine, 23(4), 341–349. https://doi.org/10.2174/1566524022666220512122525

Schizophrenia spectrum and other psychotic disorders. (2022). In American Psychiatric Association Publishing eBooks. https://doi.org/10.1176/appi.books.9780890425787.x02_schizophrenia_spectrum

Schoonover, K. E., Dienel, S., & Lewis, D. A. (2020). Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomarkers in Neuropsychiatry, 3, 100015. https://doi.org/10.1016/j.bionps.2020.100015

Seeman, P. (2013). Schizophrenia and dopamine receptors. European Neuropsychopharmacology, 23(9), 999–1009. https://doi.org/10.1016/j.euroneuro.2013.06.005

Shahsavar, A., Stohler, P., Bourenkov, G., Zimmermann, I., Siegrist, M. S., Guba, W., Pinard, E., Sinning, S., Seeger, M. A., Schneider, T. R., Dawson, R., & Nissen, P. (2021). Structural insights into the inhibition of glycine reuptake. Nature, 591(7851), 677–681. https://doi.org/10.1038/s41586-021-03274-z

Simpson, E. H., Gallo, E. F., Balsam, P. D., Javitch, J. A., & Kellendonk, C. (2021a). How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Molecular Psychiatry, 27(1), 436–444. https://doi.org/10.1038/s41380-021-01253-4

Simpson, E. H., Gallo, E. F., Balsam, P. D., Javitch, J. A., & Kellendonk, C. (2021b). How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Molecular Psychiatry, 27(1), 436–444. https://doi.org/10.1038/s41380-021-01253-4

Siskind, D., McCartney, L., Goldschlager, R., & Kisely, S. (2016). Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. British Journal of Psychiatry, 209(5), 385–392. https://doi.org/10.1192/bjp.bp.115.177261

Sparacino, G., Verdolini, N., Vieta, E., & Pacchiarotti, I. (2022). Existing and emerging pharmacological approaches to the treatment of mania: A critical overview. Translational Psychiatry, 12(1), 169.https://doi.org/10.1038/s41398-022-01928-8

Stahl, S. M. (2018). Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectrums, 23(3), 187–191. https://doi.org/10.1017/s1092852918001013

Stępnicki, P., Kondej, M., & Kaczor, A. A. (2018). Current concepts and treatments of schizophrenia. Molecules, 23(8), 2087. https://doi.org/10.3390/molecules23082087

Stilo, S. A., Di Forti, M., & Murray, R. M. (2011). Environmental risk factors for schizophrenia: implications for prevention. Neuropsychiatry, 1(5), 457–466. https://doi.org/10.2217/npy.11.42

Strange, P. G. (2008). Antipsychotic drug action: antagonism, inverse agonism or partial agonism. Trends in Pharmacological Sciences, 29(6), 314–321. https://doi.org/10.1016/j.tips.2008.03.009

Sushilkumar, S., Allen, A. C., & Osier, N. S. (2022). Chlorpromazine: Paving the Way for a Better Understanding of Schizophrenia. Frontiers for Young Minds, 10. https://doi.org/10.3389/frym.2022.676273

Takano, T., & Hansen, A. J. (2002). Beyond the role of glutamate as a neurotransmitter. Nature Reviews Neuroscience, 3(9), 748–755. https://doi.org/10.1038/nrn916

Tang, R., Zhao, X., Shi, Y., Tang, W., Gu, N., Gao, F., Yang, X., Zhu, S., Sang, H., Liang, P., & He, L. (2006). Family-based association study of Epsin 4 and Schizophrenia. Molecular Psychiatry, 11(4), 395–399. https://doi.org/10.1038/sj.mp.4001780

Taylor, W. D., Zald, D. H., Felger, J. C., Christman, S. T., Claassen, D. O., Horga, G., Miller, J. M., Gifford, K. A., Rogers, B. P., Szymkowicz, S. M., & Rutherford, B. R. (2021). Influences of dopaminergic system dysfunction on late-life depression. Molecular Psychiatry, 27(1), 180–191. https://doi.org/10.1038/s41380-021-01265-0

Thompson, J., Rosell, D. R., Slifstein, M., Xu, X., Rothstein, E., Modiano, Y. A., Kegeles, L. S., Koenigsberg, H. W., New, A. S., Hazlett, E. A., McClure, M. M., Perez-Rodriguez, M. M., Siever, L. J., & Abi-Dargham, A. (2020). Amphetamine-induced striatal dopamine release in schizotypal personality disorder. Psychopharmacology, 237(9), 2649–2659. https://doi.org/10.1007/s00213-020-05561-5

Trifu, S. C., Kohn, B., Vlasie, A., & Patrichi, B. E. (2020). Genetics of schizophrenia. Experimental and Therapeutic Medicine, 20(4), 3462-3468. https://doi.org/10.3892/etm.2020.8973

Tripathi, A., Kar, S. K., & Shukla, R. (2018). Cognitive Deficits in Schizophrenia: Understanding the biological correlates and remediation strategies. Clinical Psychopharmacology and Neuroscience: The Official Scientific Journal of the Korean College of Neuropsychopharmacology, 16(1), 7–17. https://doi.org/10.9758/cpn.2018.16.1.7

Tsitsipa, E., Rogers, J., Casalotti, S., Belessiotis-Richards, C., Zubko, O., Weil, R. S., Howard, R., Bisby, J., & Reeves, S. (2022). Selective 5HT3 antagonists and sensory processing: a systematic review. Neuropsychopharmacology, 47(4), 880–890. https://doi.org/10.1038/s41386-021-01255-4

Uher, R., Pallaskorpi, S., Suominen, K., Mantere, O., Pavlova, B., & Isometsä, E. (2018). Clinical course predicts long-term outcomes in bipolar disorder. Psychological Medicine, 49(07), 1109–1117. https://doi.org/10.1017/s0033291718001678

Umbricht, D., Alberati, D., Martin-Facklam, M., Borroni, E., Youssef, E., Ostland, M., Wallace, T. L., Knoflach, F., Dorflinger, E., Wettstein, J. G., Bausch, A., Garibaldi, G., & Santarelli, L. (2014). Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia. JAMA Psychiatry, 71(6), 637. https://doi.org/10.1001/jamapsychiatry.2014.163

Uno, Y., & Coyle, J. T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry and Clinical Neurosciences, 73(5), 204–215. https://doi.org/10.1111/pcn.12823

Vaht, M., Laas, K., Kiive, E., Parik, J., Veidebaum, T., & Harro, J. (2016). A functional neuregulin-1 gene variant and stressful life events: Effect on drug use in a longitudinal population-representative cohort study. Journal of Psychopharmacology, 31(1), 54–61. https://doi.org/10.1177/0269881116655979

Wang, H., Xu, J., Lazarovici, P., & Zheng, W. (2017). Dysbindin-1 involvement in the etiology of schizophrenia. International Journal of Molecular Sciences, 18(10), 2044. https://doi.org/10.3390/ijms18102044

Wang, Y., Zhao, B., Wu, M., Zheng, X., Lin, L., & Yin, D. (2021). Overexpression of neuregulin 1 in GABAergic interneurons results in reversible cortical disinhibition. Nature Communications, 12(1), 278. https://doi.org/10.1038/s41467-020-20552-y

Wang, Z., Zhang, T., Liu, J., Wang, H., Lu, T., Jia, M., Zhang, D., Wang, L., & Li, J. (2019). Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population. BMC Psychiatry, 19(1). https://doi.org/10.1186/s12888-019-2144-1

Wawrzczak-Bargiela, A., Bilecki, W., & Maćkowiak, M. (2023). Epigenetic targets in schizophrenia development and therapy. Brain Sciences, 13(3), 426. https://doi.org/10.3390/brainsci13030426

Werner, F., & Coveñas, R. (2010). Classical Neurotransmitters and Neuropeptides Involved in Major Depression: a Review. International Journal of Neuroscience, 120(7), 455–470. https://doi.org/10.3109/00207454.2010.483651

White, C. M. (2019). A review of human studies assessing cannabidiol’s (CBD) therapeutic actions and potential. The Journal of Clinical Pharmacology, 59(7), 923–934. https://doi.org/10.1002/jcph.1387

Wójciak, P., & Rybakowski, J. (2018). Clinical picture, pathogenesis and psychometric assessment of negative symptoms of schizophrenia. Psychiatria Polska, 52(2), 185–197. https://doi.org/10.12740/pp/70610

Wu, Y., Yang, Z., & Cui, S. (2022). Update Research Advances in the Application of Transcranial Magnetic Stimulation in the Treatment of Schizophrenia. Scanning, 2022, 1–5. https://doi.org/10.1155/2022/5415775

Yang, A. C., & Tsai, S. (2017). New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. International Journal of Molecular Sciences, 18(8), 1689. https://doi.org/10.3390/ijms18081689

Yao, Y., & Han, W. (2022). Proline metabolism in neurological and psychiatric disorders. Molecules and Cells, 45(11), 781–788. https://doi.org/10.14348/molcells.2022.0115

Yang, Y., Zhang, L., Dong, G., Zhang, L., Yu, H., Liu, Q., Su, X., Shao, M., Song, M., Zhang, Y., Ding, M., Lu, Y., Liu, B., Li, W., Yue, W., Fan, X., Yang, G., & Lv, L. (2020). Association of DTNBP1 with schizophrenia: findings from two independent samples of Han Chinese population. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00446

Downloads

Published

2024-06-27

Issue

Section

Review Articles