Effect of High-Intensity Intermittent Exercise on Cortical Hemodynamic Changes in Response to Recognition Memory and Visuospatial Tasks
DOI:
https://doi.org/10.15540/nr.11.3.242Keywords:
Recognition memory, visuospatial functions, cortical hemodynamics, prefrontal cortexAbstract
We investigated the acute effects of high-intensity intermittent exercise (HIIE) on cortical hemodynamic changes and sex differences during recognition memory and visuospatial tasks. Forty-six healthy adults (18–30 years) were randomly assigned to HIIE (n = 23, including 11 males and 12 females) or control groups (n = 23, including 10 males and 13 females). Functional near-infrared spectroscopy measured prefrontal cortex (PFC) activation during Warrington's word and facial Recognition Memory Test (RMT), and Shipley-2 test before and after the intervention. HIIE resulted in improved word recognition memory scores, but no significant changes in face recognition or visuospatial scores. PFC activation during tasks did not significantly differ following HIIE. Sex differences were observed, with males showing greater word recognition memory scores and associated hemodynamics compared to females, but no sex differences in face recognition or visuospatial tasks in response to HIIE. In summary, HIIE improved word recognition memory without affecting PFC activation. Moreover, sex differences in PFC activation during word recognition tasks were evident following HIIE. These findings contribute to our understanding of the acute effects of HIIE on cognitive performance and highlight the potential influence of sex on cortical hemodynamics during word recognition memory tasks.
References
Agarwal, B., Shah, M., Andhare, N., & Mullerpatan, R. (2016). Incremental shuttle walk test: Reference values and predictive equation for healthy Indian adults. Lung India : Official Organ of Indian Chest Society, 33(1), 36–41. https://doi.org/10.4103/0970-2113.173056
Alves, C. R. R., Gualano, B., Takao, P. P., Avakian, P., Fernandes, R. M., Morine, D., & Takito, M. Y. (2012). Effects of acute physical exercise on executive functions: A comparison between aerobic and strength exercise. Journal of Sport & Exercise Psychology, 34(4), 539–549. https://doi.org/10.1123/jsep.34.4.539
Alves, C. R. R., Tessaro, V. H., Teixeira, L. A. C., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual & Motor Skills, 118(1), 63–72. https://doi.org/10.2466/22.06.PMS.118k10w4
Anwarul, S., & Dahiya, S. (2020). A comprehensive review on face recognition methods and factors affecting facial recognition accuracy. In P. Singh, A. Kar, Y. Singh, M. Kolekar, & S. Tanwar (Eds.), Proceedings of ICRIC 2019. Lecture notes in electrical engineering (Vol. 597, pp. 495–514). https://doi.org/10.1007/978-3-030-29407-6_36
Baker, J. M., Bruno, J. L., Gundran, A., Hosseini, S. M. H., & Reiss, A. L. (2018). fNIRS measurement of cortical activation and functional connectivity during a visuospatial working memory task. PLoS ONE, 13(8), Article e0201486. https://doi.org/10.1371/journal.pone.0201486
Bao, S., Liu, J., & Liu, Y. (2022). Shedding light on the effects of orienteering exercise on spatial memory performance in college students of different genders: An fNIRS study. Brain Sciences, 12(7), Article 852. https://doi.org/10.3390/brainsci12070852
Barha, C. K., Hsiung, G.-Y. R., Best, J. R., Davis, J. C., Eng, J. J., Jacova, C., Lee, P. E., Munkacsy, M., Cheung, W., & Liu-Ambrose, T. (2017). sex difference in aerobic exercise efficacy to improve cognition in older adults with vascular cognitive impairment: Secondary analysis of a randomized controlled trial. Journal of Alzheimer’s Disease, 60(4), 1397–1410. https://doi.org/10.3233/JAD-170221
Barsegyan, A., McGaugh, J. L., & Roozendaal, B. (2014). Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory. Frontiers in Behavioral Neuroscience, 8, Article 160. https://doi.org/10.3389/fnbeh.2014.00160
Bate, S., Bennetts, R., Parris, B. A., Bindemann, M., Udale, R., & Bussunt, A. (2015). Oxytocin increases bias, but not accuracy, in face recognition line-ups. Social Cognitive and Affective Neuroscience, 10(7), 1010–1014. https://doi.org/10.1093/scan/nsu150
Berchtold, N. C., Kesslak, J. P., Pike, C. J., Adlard, P. A., & Cotman, C. W. (2001). Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus: Estrogen and exercise regulate hippocampal BDNF. European Journal of Neuroscience, 14(12), 1992–2002. https://doi.org/10.1046/j.0953-816x.2001.01825.x
Bonanni, R., Cariati, I., Tarantino, U., D’Arcangelo, G., & Tancredi, V. (2022). Physical exercise and health: A focus on its protective role in neurodegenerative diseases. Journal of Functional Morphology and Kinesiology, 7(2), Article 38. https://doi.org/10.3390/jfmk7020038
Boutcher, S. H. (2011). High-Intensity intermittent exercise and fat loss. Journal of Obesity, 2011(1), Article 868305. https://doi.org/10.1155/2011/868305
Chang, H., Kim, K., Jung, Y.-J., & Kato, M. (2017). Effects of acute high-intensity resistance exercise on cognitive function and oxygenation in prefrontal cortex. Journal of Exercise Nutrition & Biochemistry, 21(2), 1–8. https://doi.org/10.20463/jenb.2017.0012
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068
Coleman, M., Offen, K., & Markant, J. (2018). Exercise similarly facilitates men and women’s selective attention task response times but differentially affects memory task performance. Frontiers in Psychology, 9, Article 1405. https://doi.org/10.3389/fpsyg.2018.01405
Cope, M., & Delpy, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Medical & Biological Engineering & Computing, 26(3), 289–294. https://doi.org/10.1007/BF02447083
Cotman, C. W., Berchtold, N. C., & Christie, L.-A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472. https://doi.org/10.1016/j.tins.2007.06.011
da Silva de Vargas, L., das Neves, B.-H. S., Roehrs, R., Izquierdo, I., & Mello-Carpes, P. (2017). One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms. Behavioural Brain Research, 329, 120–126. https://doi.org/10.1016/j.bbr.2017.04.050
de Frias, C. M., Nilsson, L.-G., & Herlitz, A. (2006). Sex differences in cognition are stable over a 10-year period in adulthood and old age. Aging, Neuropsychology, and Cognition, 13(3–4), 574–587. https://doi.org/10.1080/13825580600678418
D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7(1), 1–13. https://doi.org/10.1016/S0926-6410(98)00004-4
Dong, J., Zhao, J., Lin, Y., Liang, H., He, X., Zheng, X., Sui, M., Zhuang, Z., & Yan, T. (2018). Exercise improves recognition memory and synaptic plasticity in the prefrontal cortex for rats modelling vascular dementia. Neurological Research, 40(1), 68–77. https://doi.org/10.1080/01616412.2017.1398389
Endo, K., Matsukawa, K., Liang, N., Nakatsuka, C., Tsuchimochi, H., Okamura, H., & Hamaoka, T. (2013). Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. The Journal of Physiological Sciences, 63(4), 287–298. https://doi.org/10.1007/s12576-013-0267-6
Fox, K. C. R., Nijeboer, S., Solomonova, E., Domhoff, G. W., & Christoff, K. (2013). Dreaming as mind wandering: Evidence from functional neuroimaging and first-person content reports. Frontiers in Human Neuroscience, 7, Article 412. https://doi.org/10.3389/fnhum.2013.00412
Friedl-Werner, A., Brauns, K., Gunga, H.-C., Kühn, S., & Stahn, A. C. (2020). Exercise-induced changes in brain activity during memory encoding and retrieval after long-term bed rest. NeuroImage, 223, Article 117359. https://doi.org/10.1016/j.neuroimage.2020.117359
Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., Benedetti, F., Abbamonte, M., Gasparotti, R., Barale, F., Perez, J., McGuire, P., & Politi, P. (2009). Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of Psychiatry and Neuroscience, 34(6), 418–432.
Gardiner, J. M., & Parkin, A. J. (1990). Attention and recollective experience in recognition memory. Memory & Cognition, 18(6), 579–583. https://doi.org/10.3758/BF03197100
Gilbert, M., & Loprinzi, P. D. (2022). The effects of high-intensity acute exercise on face-name memory in healthy young adults. Journal of Science in Sport and Exercise, 4(2), 188–193. https://doi.org/10.1007/s42978-021-00120-6
Haxby, J. V., Ungerleider, L. G., Horwitz, B., Maisog, J. M., Rapoport, S. I., & Grady, C. L. (1996). Face encoding and recognition in the human brain. Proceedings of the National Academy of Sciences, 93(2), 922–927. https://doi.org/10.1073/pnas.93.2.922
Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., Simonsen, T., Helgesen, C., Hjorth, N., Bach, R., & Hoff, J. (2007). Aerobic high-intensity intervals improve V˙O2max more than moderate training. Medicine & Science in Sports & Exercise, 39(4), 665–671. https://doi.org/10.1249/mss.0b013e3180304570
Heppe, H., Kohler, A., Fleddermann, M.-T., & Zentgraf, K. (2016). The relationship between expertise in sports, visuospatial, and basic cognitive skills. Frontiers in Psychology, 7, Article 904. https://doi.org/10.3389/fpsyg.2016.00904
Herbert, C., Junghofer, M., & Kissler, J. (2008). Event related potentials to emotional adjectives during reading. Psychophysiology, 45(3), 487–498. https://doi.org/10.1111/j.1469-8986.2007.00638.x
Herrmann, M. J., Ehlis, A.-C., Wagener, A., Jacob, C. P., & Fallgatter, A. J. (2005). Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task. Neuropsychologia, 43(12), 1713–1720. https://doi.org/10.1016/j.neuropsychologia.2005.02.011
Herwig, U., Satrapi, P., & Schönfeldt-Lecuona, C. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16(2), 95–99. https://doi.org/10.1023/B:BRAT.0000006333.93597.9d
Hew-Butler, T., Noakes, T. D., Soldin, S. J., & Verbalis, J. G. (2008). Acute changes in endocrine and fluid balance markers during high-intensity, steady-state, and prolonged endurance running: Unexpected increases in oxytocin and brain natriuretic peptide during exercise. European Journal of Endocrinology, 159(6), 729–737. https://doi.org/10.1530/EJE-08-0064
Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48(3), 307–314. https://doi.org/10.1016/S0167-8760(03)00080-1
Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral location of international 10–20 system electrode placement. Electroencephalography and Clinical Neurophysiology, 66(4), 376–382. https://doi.org/10.1016/0013-4694(87)90206-9
Hopkins, M. E., & Bucci, D. J. (2010). BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiology of Learning and Memory, 94(2), 278–284. https://doi.org/10.1016/j.nlm.2010.06.006
Hötting, K., Schickert, N., Kaiser, J., Röder, B., & Schmidt-Kassow, M. (2016). The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plasticity, 2016(1), Article 6860573. https://doi.org/10.1155/2016/6860573
Ino, T., Nakai, R., Azuma, T., Kimura, T., & Fukuyama, H. (2010). Gender differences in brain activation during encoding and recognition of male and female faces. Brain Imaging and Behavior, 4(1), 55–67. https://doi.org/10.1007/s11682-009-9085-0
Jahani, S., Setarehdan, S. K., Boas, D. A., & Yücel, M. A. (2018). Motion artifact detection and correction in functional near-infrared spectroscopy: A new hybrid method based on spline interpolation method and Savitzky–Golay filtering. Neurophotonics, 5(1), Article 015003. https://doi.org/10.1117/1.NPh.5.1.015003
Kalia, V., Vishwanath, K., Knauft, K., Vellen, B. V. D., Luebbe, A., & Williams, A. (2018). Acute stress attenuates cognitive flexibility in males only: An fNIRS examination. Frontiers in Psychology, 9, Article 2084. https://doi.org/10.3389/fpsyg.2018.02084
Kim, J. J., Andreasen, N. C., O’Leary, D. S., Wiser, A. K., Ponto, L. L. B., Watkins, G. L., & Hichwa, R. D. (1999). Direct comparison of the neural substrates of recognition memory for words and faces. Brain, 122(6), 1069–1083. https://doi.org/10.1093/brain/122.6.1069
Kitaoka, R., Fujikawa, T., Miyaki, T., Matsumura, S., Fushiki, T., & Inoue, K. (2010). Increased noradrenergic activity in the ventromedial hypothalamus during treadmill running in rats. Journal of Nutritional Science and Vitaminology, 56(3), 185–190. https://doi.org/10.3177/jnsv.56.185
Kliszczewicz, B., Buresh, R., Bechke, E., & Williamson, C. (2017). Metabolic biomarkers following a short and long bout of high-intensity functional training in recreationally trained men. Journal of Human Sport and Exercise, 12(3), 710–718. https://doi.org/10.14198/jhse.2017.123.15
Kovacevic, A., Fenesi, B., Paolucci, E., & Heisz, J. J. (2020). The effects of aerobic exercise intensity on memory in older adults. Applied Physiology, Nutrition, and Metabolism, 45(6), 591–600. https://doi.org/10.1139/apnm-2019-0495
Kubota, Y., Toichi, M., Shimizu, M., Mason, R. A., Findling, R. L., Yamamoto, K., & Calabrese, J. R. (2006). Prefrontal hemodynamic activity predicts false memory—A near-infrared spectroscopy study. NeuroImage, 31(4), 1783–1789. https://doi.org/10.1016/j.neuroimage.2006.02.003
Kujach, S., Byun, K., Hyodo, K., Suwabe, K., Fukuie, T., Laskowski, R., Dan, I., & Soya, H. (2018). A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults. NeuroImage, 169, 117–125. https://doi.org/10.1016/j.neuroimage.2017.12.003
Lachert, P., Janusek, D., Pulawski, P., Liebert, A., Milej, D., & Blinowska, K. J. (2017). Coupling of oxy- and deoxyhemoglobin concentrations with EEG rhythms during motor task. Scientific Reports, 7(1), Article 15414. https://doi.org/10.1038/s41598-017-15770-2
Lodge, J. K. (2013). The concurrent validity of the Shipley-2 and the WAIS-IV [Professional Dissertation]. Wright State University.
Loprinzi, P. D., & Frith, E. (2018). The role of sex in memory function: considerations and recommendations in the context of exercise. Journal of Clinical Medicine, 7(6), Article 132. https://doi.org/10.3390/jcm7060132
Loprinzi, P. D., Roig, M., Etnier, J. L., Tomporowski, P. D., & Voss, M. (2021). Acute and chronic exercise effects on human memory: What we know and where to go from here. Journal of Clinical Medicine, 10(21), Article 4812. https://doi.org/10.3390/jcm10214812
Mahalakshmi, B., Maurya, N., Lee, S.-D., & Bharath Kumar, V. (2020). Possible neuroprotective mechanisms of physical exercise in neurodegeneration. International Journal of Molecular Sciences, 21(16), Article 16. https://doi.org/10.3390/ijms21165895
Marques-Aleixo, I., Beleza, J., Sampaio, A., Stevanović, J., Coxito, P., Gonçalves, I., Ascensão, A., & Magalhães, J. (2021). Preventive and therapeutic potential of physical exercise in neurodegenerative diseases. Antioxidants & Redox Signaling, 34(8), 674–693. https://doi.org/10.1089/ars.2020.8075
Matthews, V. B., Åström, M.-B., Chan, M. H. S., Bruce, C. R., Krabbe, K. S., Prelovsek, O., Åkerström, T., Yfanti, C., Broholm, C., Mortensen, O. H., Penkowa, M., Hojman, P., Zankari, A., Watt, M. J., Bruunsgaard, H., Pedersen, B. K., & Febbraio, M. A. (2009). Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 52(7), 1409–1418. https://doi.org/10.1007/s00125-009-1364-1
Mervis, C. B., Robinson, B. F., & Pani, J. R. (1999). Visuospatial construction. American Journal of Human Genetics, 65(5), 1222–1229. https://doi.org/10.1086/302633
Miranda, M. I. (2007). Changes in neurotransmitter extracellular levels during memory formation. In F. Bermúdez-Rattoni (Ed.), Neural plasticity and memory: From genes to brain imaging. CRC Press/Taylor & Francis.
Mumaw, R. J., Pellegrino, J. W., Kail, R. V., & Carter, P. (1984). Different slopes for different folks: Process analysis of spatial aptitude. Memory & Cognition, 12(5), 515–521. https://doi.org/10.3758/BF03198314
Munion, A. K., Stefanucci, J. K., Rovira, E., Squire, P., & Hendricks, M. (2019). Gender differences in spatial navigation: Characterizing wayfinding behaviors. Psychonomic Bulletin & Review, 26(6), 1933–1940. https://doi.org/10.3758/s13423-019-01659-w
Nagamatsu, L. S., Handy, T. C., Hsu, C. L., Voss, M., & Liu-Ambrose, T. (2012). Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Archives of Internal Medicine, 172(8), 666–668. https://doi.org/10.1001/archinternmed.2012.379
Nelson, C. A. (2001). The development and neural bases of face recognition. Infant and Child Development, 10(1–2), 3–18. https://doi.org/10.1002/icd.239
Ó Scalaidhe, S. P., Wilson, F. A. W., & Goldman-Rakic, P. S. (1999). Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cerebral Cortex, 9(5), 459–475. https://doi.org/10.1093/cercor/9.5.459
O’Bryant, S. E., Hilsabeck, R. C., McCaffrey, R. J., & Drew Gouvier, W. (2003). The Recognition Memory Test Examination of ethnic differences and norm validity. Archives of Clinical Neuropsychology, 18(2), 135–143. https://doi.org/10.1016/S0887-6177(01)00189-5
Papathanasiou, G., Georgoudis, G., Georgakopoulos, D., Katsouras, C., Kalfakakou, V., & Evangelou, A. (2010). Criterion-related validity of the short International Physical Activity Questionnaire against exercise capacity in young adults. European Journal of Cardiovascular Prevention and Rehabilitation, 17(4), 380–386. https://doi.org/10.1097/HJR.0b013e328333ede6
Pilz, L. K., Keller, L. K., Lenssen, D., & Roenneberg, T. (2018). Time to rethink sleep quality: PSQI scores reflect sleep quality on workdays. Sleep, 41(5), Article zsy029. https://doi.org/10.1093/sleep/zsy029
Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., & Tachtsidis, I. (2019). Current status and issues regarding pre-processing of fNIRS neuroimaging data: An investigation of diverse signal filtering methods within a general linear model framework. Frontiers in Human Neuroscience, 12, Article 505. https://doi.org/10.3389/fnhum.2018.00505
Rattray, B., & Smee, D. J. (2016). The effect of high and low exercise intensity periods on a simple memory recognition test. Journal of Sport and Health Science, 5(3), 342–348. https://doi.org/10.1016/j.jshs.2015.01.005
Rugg, M. D., Fletcher, P. C., Chua, P. M.-L., & Dolan, R. J. (1999). The role of the prefrontal cortex in recognition memory and memory for source: An fMRI study. NeuroImage, 10(5), 520–529. https://doi.org/10.1006/nimg.1999.0488
Sharif, M., Naz, F., Yasmin, M., Shahid, M. A., & Rehman, A. (2017). Face recognition: A survey. Journal of Engineering Science and Technology Review, 10(2), 166–177. https://doi.org/10.25103/jestr.102.20
Soukup, V. M., Bimbela, A., & Schiess, M. C. (1999). Recognition memory for faces: Reliability and validity of the Warrington Recognition Memory Test (RMT) in a neurological sample. Journal of Clinical Psychology in Medical Settings, 6(3), 287–293. https://doi.org/10.1023/A:1026243822356
Spaniol, J., Davidson, P. S. R., Kim, A. S. N., Han, H., Moscovitch, M., & Grady, C. L. (2009). Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation. Neuropsychologia, 47(8–9), 1765–1779. https://doi.org/10.1016/j.neuropsychologia.2009.02.028
Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., Konda, S., Engberg, K., Lauterbur, P. C., & Greenough, W. T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117(4), 1037–1046. https://doi.org/10.1016/S0306-4522(02)00664-4
Tak, S., & Ye, J. C. (2013). Statistical analysis of fNIRS data: A comprehensive review. NeuroImage, 85(Part 1), 72–91. https://doi.org/10.1016/j.neuroimage.2013.06.016
Taverniers, J., Van Ruysseveldt, J., Smeets, T., & von Grumbkow, J. (2010). High-intensity stress elicits robust cortisol increases, and impairs working memory and visuo-spatial declarative memory in Special Forces candidates: A field experiment. Stress, 13(4), 324–334. https://doi.org/10.3109/10253891003642394
Trojano, L., & Conson, M. (2008). Chapter 19 visuospatial and visuoconstructive deficits. In M. J. Aminoff, F. Boller, D. F. Swaab, G. Goldenberg, & B. L. Miller (Eds.), Handbook of clinical neurology (Vol. 88, pp. 373–391). Elsevier. https://doi.org/10.1016/S0072-9752(07)88019-5
Tsai, C.-L., Wang, C.-H., Pan, C.-Y., Chen, F.-C., Huang, S.-Y., & Tseng, Y.-T. (2016). The effects of different exercise types on visuospatial attention in the elderly. Psychology of Sport and Exercise, 26, 130–138. https://doi.org/10.1016/j.psychsport.2016.06.013
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., Ogoh, S., & Hashimoto, T. (2016). Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology & Behavior, 160, 26–34. https://doi.org/10.1016/j.physbeh.2016.03.029
van Stegeren, A. H., Goekoop, R., Everaerd, W., Scheltens, P., Barkhof, F., Kuijer, J. P. A., & Rombouts, S. A. R. B. (2005). Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. NeuroImage, 24(3), 898–909. https://doi.org/10.1016/j.neuroimage.2004.09.011
Varma, V. R., Tang, X., & Carlson, M. C. (2016). Hippocampal sub-regional shape and physical activity in older adults. Hippocampus, 26(8), 1051–1060. https://doi.org/10.1002/hipo.22586
Wang, C.-H., Liang, W.-K., Tseng, P., Muggleton, N. G., Juan, C.-H., & Tsai, C.-L. (2015). The relationship between aerobic fitness and neural oscillations during visuo-spatial attention in young adults. Experimental Brain Research, 233(4), 1069–1078. https://doi.org/10.1007/s00221-014-4182-8
Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., & Soya, H. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. NeuroImage, 50(4), 1702–1710. https://doi.org/10.1016/j.neuroimage.2009.12.023
Yonelinas, A. P., Hopfinger, J. B., Buonocore, M. H., Kroll, N. E. A., & Baynes, K. (2001). Hippocampal, parahippocampal and occipital-temporal contributions to associative and item recognition memory: An fMRI study: NeuroReport, 12(2), 359–363. https://doi.org/10.1097/00001756-200102120-00035
Zhou, L. Y. Y., Wright, T. E., & Clarkson, A. N. (2016). Prefrontal cortex stroke induces delayed impairment in spatial memory. Behavioural Brain Research, 296, 373–378. https://doi.org/10.1016/j.bbr.2015.08.022
Zou, L., Yu, Q., Shijie, L., & Loprinzi, P. (2020). Exercise on visuo-spatial memory: Direct effects and underlying mechanisms. American Journal of Health Behavior, 44(2), 169–179. https://doi.org/10.5993/AJHB.44.2.5
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Prachi Khandekar Sathe, Shweta Shenoy, Abhinav Sathe
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).