Understanding Migraine: Epidemiology, EEG Abnormalities, and the Potential of Neurofeedback Training

Authors

  • Lama Abdurrahman Baylor College of Medicine, Texas, USA
  • Michael Keane Actualise Psychological Services

DOI:

https://doi.org/10.15540/nr.11.2.184

Keywords:

migraine, electroencephalogram (EEG), neurofeedback training (NFT), functional connectivity, brain waves, EEG abnormalities

Abstract

Introduction. Migraine is a prevalent neurovascular disorder with a significant impact on individuals’ quality of life. In this paper, we focus particularly on electroencephalogram (EEG) studies, and the ability of that modality to detect abnormalities in brain waves and provide insights into migraine pathophysiology. Neurofeedback training (NFT) as a potential therapeutic approach for migraine management is also explored. Methods. The manuscript provides a review of relevant literature on the epidemiology, classification, pathophysiology, and measurement techniques related to migraine. Results. Epidemiological studies highlight the high prevalence of migraine. EEG studies demonstrate delta and beta wave variations in people who experience migraine. Functional connectivity studies using EEG and functional magnetic resonance imaging (fMRI) suggest involvement of specific brain regions, including the prefrontal cortex, anterior cingulate cortex, amygdala, and insular cortex, in migraine pathophysiology. NFT studies indicate promising outcomes in reducing migraine frequency and severity. Conclusion. Migraine is a complex disorder with multiple subtypes and triggers. Advances in understanding its pathophysiology suggest the involvement of cortical and brainstem mechanisms, as well as cortical spreading depression. EEG abnormalities provide valuable insights into the neurobiological dysfunctions associated with migraine. NFT shows promise as a noninvasive and personalized treatment option. Future research should further investigate the mechanisms underlying EEG abnormalities and continue to develop effective interventions for migraine management.

Author Biography

Lama Abdurrahman, Baylor College of Medicine, Texas, USA

Medical student

References

Anarte-Lazo, E., Carvalho, G. F., Schwarz, A., Luedtke, K., & Falla, D. (2021). Differentiating migraine, cervicogenic headache and asymptomatic individuals based on physical examination findings: A systematic review and meta-analysis. BMC Musculoskeletal Disorders, 22(1), Article 755. https://doi.org/10.1186/s12891-021-04595-w

Ashina, M., Katsarava, Z., Do, T. P., Buse, D. C., Pozo-Rosich, P., Özge, A., Krymchantowski, A. V., Lebedeva, E. R., Ravishankar, K., Yu, S., Sacco, S., Ashina, S., Younis, S., Steiner, T. J., & Lipton, R. B. (2021). Migraine: Epidemiology and systems of care. The Lancet, 397(10283), 1485–1495. https://doi.org/10.1016/S0140-6736(20)32160-7

Bjørk, M. H., Stovner, L. J., Engstrøm, M., Stjern, M., Hagen, K., & Sand, T. (2009). Interictal quantitative EEG in migraine: A blinded controlled study. The Journal of Head and Face Pain, 10(5), 331–339. https://doi.org/10.1007/s10194-009-0140-4

Burch, R., Rizzoli, P., & Loder, E. (2018). The prevalence and impact of migraine and severe headache in the United States: Figures and trends from government health studies. Headache: The Journal of Head and Face Pain, 58(4), 496–505. https://doi.org/10.1111/head.13281

Charles, A. C., & Baca, S. M. (2013). Cortical spreading depression and migraine. Nature Reviews Neurology, 9(11), 637–644. https://doi.org/10.1038/nrneurol.2013.192

Charles, A., & Brennan, K. C. (2010). The neurobiology of migraine. Handbook of Clinical Neurology, 97, 99–108. https://doi.org/10.1016/S0072-9752(10)97007-3

Chong, C. D., Schwedt, T. J., & Hougaard, A. (2019). Brain functional connectivity in headache disorders: A narrative review of MRI investigations. Journal of Cerebral Blood Flow & Metabolism, 39(4), 650–669. https://doi.org/10.1177/0271678X17740794

Cozzolino, O., Marchese, M., Trovato, F., Pracucci, E., Ratto, G. M., Buzzi, M. G., Sicca, F., & Santorelli, F. M. (2018). Understanding spreading depression from headache to sudden unexpected death. Frontiers in Neurology, 9, Article 19. https://doi.org/10.3389/fneur.2018.00019

Dai, W., Liu, R.-H., Qiu, E., Liu, Y., Chen, Z., Chen, X., Ao, R., Zhuo, M., & Yu, S. (2021). Cortical mechanisms in migraine. Molecular Pain, 17. https://doi.org/10.1177/17448069211050246

de Tommaso, M. (2019). An update on EEG in migraine. Expert Review of Neurotherapeutics, 19(8), 729–737. https://doi.org/10.1080/14737175.2019.1586534

Edes, A. E., McKie, S., Szabo, E., Kokonyei, G., Pap, D., Zsombok, T., Magyar, M., Csepany, E., Hullam, G., Szabo, A. G., Kozak, L. R., Bagdy, G., & Juhasz, G. (2019). Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: An fMRI study. BMC Neurology, 19(1), Article 237. https://doi.org/10.1186/s12883-019-1478-0

Goadsby, P. J., Holland, P. R., Martins-Oliveira, M., Hoffmann, J., Schankin, C., & Akerman, S. (2017). Pathophysiology of migraine: A disorder of sensory processing. Physiological Reviews, 97(2), 553–622. https://doi.org/10.1152/physrev.00034.2015

Huang, X., Zhang, D., Wang, P., Mao, C., Miao, Z., Liu, C., Xu, C., Yin, X., & Wu, X. (2021). Altered amygdala effective connectivity in migraine without aura: Evidence from resting‐state fMRI with Granger causality analysis. Headache: The Journal of Head and Face Pain, 22(1), Article 25. https://doi.org/10.1186/s10194-021-01240-8

Martic-Biocina, S., Zivoder, I., & Kozina, G. (2017). Biofeedback and neurofeedback application in the treatment of migraine. Psychiatria Danubina, 29(Suppl. 3), 575–577.

Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143–158. https://doi.org/10.15412/J.BCN.03070208

Mason, B. N., & Russo, A. F. (2018). Vascular contributions to migraine: Time to revisit? Frontiers in Cellular Neuroscience, 12, Article 233. https://doi.org/10.3389/fncel.2018.00233

Neufeld, M. Y., Treves, T. A., & Korczyn, A. D. (1991). EEG and topographic frequency analysis in common and classic migraine. Headache, 31(4), 232–236. https://doi.org/10.1111/j.1526-4610.1991.hed3104232.x

Ong, W.-Y., Stohler, C. S., & Herr, D. R. (2019). Role of the prefrontal cortex in pain processing. Molecular Neurobiology, 56(2), 1137–1166. https://doi.org/10.1007/s12035-018-1130-9

Park, J.-W., Chu, M. K., Kim, J.-M., Park, S.-G., & Cho, S.-J. (2016). Analysis of trigger factors in episodic migraineurs using a smartphone headache diary applications. PLoS ONE, 11(2), Article e0149577. https://doi.org/10.1371/journal.pone.0149577

Pescador Ruschel, M. A., & De Jesus, O. (2022). Migraine headache. StatPearls Publishing.

Peters, G. L. (2019). Migraine overview and summary of current and emerging treatment options. The American Journal of Managed Care, 25(Suppl. 2), S23–S34.

Rho, Y. I., Kim, S. H., Kang, H.-C., Lee, Y.-J., Kim, Y. O., & Kim, S. K. (2020). EEG characteristics and diagnostic implications in childhood headache: A multi-center study. Frontiers in Neurology, 11, Article 569486. https://doi.org/10.3389/fneur.2020.569486

Roy, R., de la Vega, R., Jensen, M. P., & Miró, J. (2020). Neurofeedback for pain management: A systematic review. Frontiers in Neuroscience, 14, Article 671. https://doi.org/10.3389/fnins.2020.00671

Sand, T. (1991). EEG in migraine: A review of the literature. Functional Neurology, 6(1), 7–22.

Schwedt, T., Chiang, C.-C., Chong, C., & Dodick, D. (2015). Functional MRI of migraine. The Lancet Neurology, 14(1), 81–91. https://doi.org/10.1016/S1474-4422(14)70193-0

Shankar Kikkeri, N., & Nagalli, S. (2022). Migraine with aura. StatPearls Publishing.

Shi, Y., Zeng, W., Nie, W., & Yang, J. (2020). Multi-channel hierarchy functional integration analysis between large-scale brain networks for migraine: An fMRI study. NeuroImage. Clinical, 28, Article 102462. https://doi.org/10.1016/j.nicl.2020.102462

Smitherman, T. A., Burch, R., Sheikh, H., & Loder, E. (2013). The prevalence, impact, and treatment of migraine and severe headaches in the United States: A review of statistics from national surveillance studies. Headache: The Journal of Head and Face Pain, 53(3), 427–436. https://doi.org/10.1111/head.12074

Sownthariya, R., & Anandan, H. (2017). Study of EEG abnormalities in migraine. International Journal of Contemporary Medical Research, 4(8), 1743–1744.

Takano, T., & Nedergaard, M. (2009). Deciphering migraine. The Journal of Clinical Investigation, 119(1), 16–19. https://doi.org/10.1172/JCI38051

Taylor, K. S., Seminowicz, D. A., & Davis, K. D. (2009). Two systems of resting state connectivity between the insula and cingulate cortex. Human Brain Mapping, 30(9), 2731–2745. https://doi.org/10.1002/hbm.20705

Walker, J. E. (2011). QEEG-guided neurofeedback for recurrent migraine headaches. Clinical EEG and Neuroscience, 42(1), 59–61. https://doi.org/10.1177/155005941104200112

Yang, S., Orlova, Y., Lipe, A., Boren, M., Hincapie-Castillo, J. M., Park, H., Chang, C.-Y., Wilson, D. L., Adkins, L., & Lo-Ciganic, W.-H. (2022). Trends in the management of headache disorders in US emergency departments: Analysis of 2007–2018 National Hospital Ambulatory Medical Care Survey Data. Journal of Clinical Medicine, 11(5), Article 1401. https://doi.org/10.3390/jcm11051401

Yuan, K., Qin, W., Liu, P., Zhao, L., Yu, D., Zhao, L., Dong, M., Liu, J., Yang, X., von Deneen, K. M., Liang, F., & Tian, J. (2012). Reduced fractional anisotropy of corpus callosum modulates inter-hemispheric resting state functional connectivity in migraine patients without aura. PLoS ONE, 7(9), Article e45476. https://doi.org/10.1371/journal.pone.0045476

Downloads

Published

2024-06-27

Issue

Section

Review Articles