The Age-Specific Impact of Alpha-Wave Binaural Acoustic Stimulation on Motor-Learning Aptitude
DOI:
https://doi.org/10.15540/nr.11.1.71Keywords:
Motor learning, Alpha binaural acoustic beats, EEG power, Mirror tracing taskAbstract
There are some reports on the impact of binaural acoustic beat (BAB) training on motor learning. The current study aimed to explain the possible influences of alpha BAB on motor learning in young and older adult individuals. To this end, 26 male participants were assigned to four parallel groups: two alpha BAB groups (young, older adults) and two control groups (young, older adults). The alpha BAB groups received alpha BAB for 30 min, whereas examinees in the control groups just wore headphones without listening to any music over the experiment period. The digital mirror-tracing task was employed to examine the subjects’ motor performance simultaneously with quantitative electroencephalography and after the intervention. In the mirror-tracing task, a significant decrease in the number of errors was found only for the older adults who received alpha BAB. Meanwhile, the reaction time decreased significantly in the young Alpha BAB group. Alpha BAB was associated with a notable increase in alpha current source density dynamics in the young subjects and enhanced beta, high beta oscillations, and gamma power in the older adults. Our findings suggest that alpha BAB might improve motor performance in older adults and young individuals through different patterns.
References
Askim, T., Indredavik, B., Vangberg, T., & Håberg, A. (2009). Motor network changes associated with successful motor skill relearning after acute ischemic stroke: A longitudinal functional magnetic resonance imaging study. Neurorehabilitation and Neural Repair, 23(3), 295–304. https://doi.org/10.1177/1545968308322840
Bangert, A. S., Reuter-Lorenz, P. A., Walsh, C. M., Schachter, A. B., & Seidler, R. D. (2010). Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia, 48(4), 1165–1170. https://doi.org/10.1016/j.neuropsychologia.2009.11.013
Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2017). The effect of binaural beats on verbal working memory and cortical connectivity. Journal Of Neural Engineering, 14(2), 026014. https://doi.org/10.1088/1741-2552/aa5d67
Beik, M., Taheri, H., Saberi Kakhki, A., & Ghoshuni, M. (2020). Neural mechanisms of the contextual interference effect and parameter similarity on motor learning in older adults: An EEG study. Frontiers in Aging Neuroscience, 12, 173. https://doi.org/10.3389/fnagi.2020.00173
Benwell, C. S. Y., London, R. E., Tagliabue, C. F., Veniero, D., Gross, J., Keitel, C., & Thut, G. (2019). Frequency and power of human alpha oscillations drift systematically with time-on-task. NeuroImage, 192, 101–114. https://doi.org/10.1016/j.neuroimage.2019.02.067
Bermejo‐Pareja, F., Louis, E. D., & Benito‐León, J. (2007). Risk of incident dementia in essential tremor: A population‐based study. Movement Disorders, 22(11), 1573–1580. https://doi.org/10.1002/mds.21553
Bradford, J. C., Lukos, J. R., & Ferris, D. P. (2016). Electrocortical activity distinguishes between uphill and level walking in humans. Journal of Neurophysiology, 115(2), 958–966. https://doi.org/10.1152/jn.00089.2015
Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745
Calomeni, M. R., da Silva, V. F., Velasques, B. B., Feijó, O. G., Bittencourt, J. M., & de Souza E. Silva, A. P. (2017). Modulatory effect of association of brain stimulation by light and binaural beats in specific brain waves. Clinical Practice & Epidemiology in Mental Health, 13, 134–144. https://doi.org/10.2174/1745017901713010134
Chaieb, L., Wilpert, E. C., Reber, T. P., & Fell, J. (2015). Auditory beat stimulation and its effects on cognition and mood states. Frontiers in Psychiatry, 6, 70. https://doi.org/10.3389/fpsyt.2015.00070
Clark, B. C. (2019). Neuromuscular changes with aging and sarcopenia. The Journal of Frailty & Aging, 8(1), 7–9. https://doi.org/10.14283/jfa.2018.35
Coffey, E. B., Nicol, T., White-Schwoch, T., Chandrasekaran, B., Krizman, J., Skoe, E., Zatorre, R. J., & Kraus, N. (2019). Evolving perspectives on the sources of the frequency-following response. Nature Communications, 10(1), Article 5036. https://doi.org/10.1038%2Fs41467-019-13003-w
Collins, K., Rohl, B., Morgan, S., Huey, E. D., Louis, E. D., & Cosentino, S. (2017). Mild cognitive impairment subtypes in a cohort of elderly essential tremor cases. Journal of the International Neuropsychological Society, 23(5), 390–399. https://doi.org/10.1017%2FS1355617717000170
Dayan, E., & Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443–454. https://doi.org/10.1016/j.neuron.2011.10.008
Desmottes, L., Maillart, C., & Meulemans, T. (2017). Mirror-drawing skill in children with specific language impairment: Improving generalization by incorporating variability into the practice session. Child Neuropsychology, 23(4), 463–482. https://psycnet.apa.org/doi/10.1080/09297049.2016.1170797
Draganova, R., Ross, B., Wollbrink, A., & Pantev, C. (2008). Cortical steady-state responses to central and peripheral auditory beats. Cerebral Cortex, 18(5), 1193–1200. https://doi.org/10.1093/cercor/bhm153
Ecsy, K., Jones, A. K. P., & Brown, C. A. (2017). Alpha‐range visual and auditory stimulation reduces the perception of pain. European Journal of Pain, 21(3), 562–572. https://doi.org/10.1002/ejp.960
Frolov, N. S., Pitsik, E. N., Maksimenko, V. A., Grubov, V. V., Kiselev, A. R., Wang, Z., & Hramov, A. E. (2020). Age-related slowing down in the motor initiation in elderly adults. PLoS ONE, 15(9), Article e0233942. https://doi.org/10.1371/journal.pone.0233942
Gabrieli, J. D., Corkin, S., Mickel, S. F., & Growdon, J. H. (1993). Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer's disease and in global amnesia. Behavioral Neuroscience, 107(6), 899–910. https://doi.org/10.1037/0735-7044.107.6.899
Gale, S. A., Acar, D., & Daffner, K. R. (2018). Dementia. The American Journal of Medicine, 131(10), 1161–1169. https://doi.org/10.1016/j.amjmed.2018.01.022
Gálvez, G., Recuero, M., Canuet, L., & Del-Pozo, F. (2018). Short-term effects of binaural beats on EEG power, functional connectivity, cognition, gait and anxiety in Parkinson’s disease. International Journal of Neural Systems, 28(05), 1750055. https://doi.org/10.1142/s0129065717500551
Gao, X., Cao, H., Ming, D., Qi, H., Wang, X., Wang, X., Chen, R., & Zhou, P. (2014). Analysis of EEG activity in response to binaural beats with different frequencies. International Journal of Psychophysiology, 94(3), 399–406. https://doi.org/10.1016/j.ijpsycho.2014.10.010
Garcia-Argibay, M., Santed, M. A., & Reales, J. M. (2019a). Binaural auditory beats affect long-term memory. Psychological Research, 83(6), 1124–1136. https://doi.org/10.1007/s00426-017-0959-2
Garcia-Argibay, M., Santed, M. A., & Reales, J. M. (2019b). Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: A meta-analysis. Psychological Research, 83(2), 357–372. https://doi.org/10.1007/s00426-018-1066-8
Ghasemian, M., Taheri, H., Kakhki, A. S., & Ghoshuni, M. (2016). The effect of alpha neurofeedback training on motor skill acquisition. Biosciences Biotechnology Research Asia, 13(3), 1651–1656. https://doi.org/10.13005/bbra/2313
Goodin, P., Ciorciari, J., Baker, K., Carrey, A.-M., Harper, M., & Kaufman, J. (2012). A high-density EEG investigation into steady state binaural beat stimulation. PLoS ONE, 7(4), Article e34789. https://doi.org/10.1371/journal.pone.0034789
Grose, J. H., & Mamo, S. K. (2012). Electrophysiological measurement of binaural beats: Effects of primary tone frequency and observer age. Ear and Hearing, 33(2), 187–194. https://doi.org/10.1097/AUD.0b013e318230bbbd
Haar, S., van Assel, C. M., & Faisal, A. A. (2020). Motor learning in real-world pool billiards. Scientific Reports, 10(1), Article 20046. https://doi.org/10.1038/s41598-020-76805-9
Hadders-Algra, M. (2010). Variation and variability: Key words in human motor development. Physical Therapy, 90(12), 1823–1837 https://doi.org/10.2522/ptj.20100006
Halgren, M., Ulbert, I., Bastuji, H., Fabó, D., Erőss, L., Rey, M., Devinsky, O., Doyle, W. K., Mak-McCully, R., Halgren, E., Wittner, L., Chauvel, P., Heit, G., Eskandar, E., Mandell, A., & Cash, S. S. (2019). The generation and propagation of the human alpha rhythm. Proceedings of the National Academy of Sciences, 116(47), 23772–23782. https://doi.org/10.1073/pnas.1913092116
Halsband, U., & Lange, R. K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology-Paris, 99(4–6), 414–424. https://doi.org/10.1016/j.jphysparis.2006.03.007
Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage, 67, 283–297. https://doi.org/10.1016/j.neuroimage.2012.11.020
Huang, T. L., & Charyton, C. (2008). A comprehensive review of the psychological effects of brainwave entrainment. Alternative Therapies in Health and Medicine, 14(5), 38–50.
Hunter, S. K., Pereira, H. M., & Keenan, K. G. (2016). The aging neuromuscular system and motor performance. Journal of Applied Physiology, 121(4), 982–995. https://doi.org/10.1152/japplphysiol.00475.2016
Ibarra-Zarate, D. I., Naal-Ruiz, N. E., & Alonso-Valerdi, L. M. (2022). Binaural sound therapy for tinnitus treatment: A psychometric and neurophysiological evaluation. American Journal of Otolaryngology, 43(1), 103248. https://doi.org/10.1016/j.amjoto.2021.103248
Iturralde, P. A., & Torres-Oviedo, G. (2018). The adaptation of muscle activity during split-belt walking reveals age-dependent decline of motor learning. bioRxiv, 372359. https://doi.org/10.1101/372359
King, B. R., Fogel, S. M., Albouy, G., & Doyon, J. (2013). Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Frontiers In Human Neuroscience, 7, 142. https://doi.org/10.3389/fnhum.2013.00142
Kitago, T., & Krakauer, J. W. (2013). Motor learning principles for neurorehabilitation. Handbook Of Clinical Neurology, 110, 93–103. https://doi.org/10.1016/b978-0-444-52901-5.00008-3
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends In Cognitive Sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007
Kraus, J., & Porubanová, M. (2015). The effect of binaural beats on working memory capacity. Studia Psychologica, 57(2), 135. https://doi.org/10.21909/sp.2015.02.689
Maceira-Elvira, P., Popa, T., Schmid, A.-C., & Hummel, F. C. (2020). Feasibility of home-based, self-applied transcranial direct current stimulation to enhance motor learning in middle-aged and older adults. Brain Stimulation, 13(1), 247–249. https://doi.org/10.1016/j.brs.2019.08.014
Mammarella, N., Fairfield, B., & Cornoldi, C. (2007). Does music enhance cognitive performance in healthy older adults? The Vivaldi effect. Aging Clinical and Experimental Research, 19(5), 394–399. https://doi.org/10.1007/bf03324720
Munro, B. A., & Searchfield, G. D. (2019). The short-term effects of recorded ocean sound with and without alpha frequency binaural beats on tinnitus perception. Complementary Therapies in Medicine, 44, 291–295. https://doi.org/10.1016/j.ctim.2019.05.005
Newson, R. S., & Kemps, E. B. (2005). General lifestyle activities as a predictor of current cognition and cognitive change in older adults: A cross-sectional and longitudinal examination. The Journals of Gerontology Series B, 60(3), P113–P120. https://doi.org/10.1093/geronb/60.3.p113
Nieborowska, V., Lau, S.-T., Campos, J., Pichora-Fuller, M. K., Novak, A., & Li, K. Z. (2019). Effects of age on dual-task walking while listening. Journal Of Motor Behavior, 51(4), 416-427. https://doi.org/10.1080/00222895.2018.1498318
Norhazman, H., Zaini, N. M., Taib, M., Jailani, R., & Omar, H. (2014). The investigation of alpha frontal energy asymmetry on normal and stress subjects after listening to the binaural beats 10 Hz. Paper presented at the 2014 IEEE 10th International Colloquium on Signal Processing and its Applications (pp. 246–250). Kuala Lumpur, Malaysia. https://doi.org/10.1109/CSPA.2014.6805758
Ortiz, T., Martínez, A., Fernández, A., Maestu, F., Campo, P., Hornero, R., Escudero, J., Poch, J. (2008). Efecto de la estimulación auditiva a una frecuencia de 5 Hz en la memoria verbal. Actas Espanolas de Psiquiatria, 36(6), 307–313.
Oster, G. (1973). Auditory beats in the brain. Scientific American, 229(4), 94–103. https://doi.org/10.1038/scientificamerican1073-94
Park, D. C., & Bischof, G. N. (2013). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1), 109–119. https://doi.org/10.31887/DCNS.2013.15.1/park
Perez, H. D. O., Dumas, G., & Lehmann, A. (2020). Binaural Beats through the auditory pathway: From brainstem to connectivity patterns. Eneuro, 7(2), ENEURO.0232. https://doi.org/10.1523/ENEURO.0232-19.2020
Perrott, D. R., & Nelson, M. A. (1969). Limits for the detection of binaural beats. The Journal of the Acoustical Society of America, 46(6B), 1477–1481. https://doi.org/10.1121/1.1911890
Pfurtscheller, G., Woertz, M., Supp, G., & Lopes da Silva, F. H. (2003). Early onset of post-movement beta electroencephalogram synchronization in the supplementary motor area during self-paced finger movement in man. Neuroscience Letters, 339(2), 111–114. https://doi.org/10.1016/s0304-3940(02)01479-9
Pratt, H., Starr, A., Michalewski, H. J., Dimitrijevic, A., Bleich, N., & Mittelman, N. (2009). Cortical evoked potentials to an auditory illusion: Binaural beats. Clinical neurophysiology, 120(8), 1514–1524. https://doi.org/10.1016/j.clinph.2009.06.014
Pratt, H., Starr, A., Michalewski, H. J., Dimitrijevic, A., Bleich, N., & Mittelman, N. (2010). A comparison of auditory evoked potentials to acoustic beats and to binaural beats. Hearing Research, 262(1–2), 34–44. https://doi.org/10.1016/j.heares.2010.01.013
Raethjen, J., Govindan, R., Kopper, F., Muthuraman, M., & Deuschl, G. (2007). Cortical involvement in the generation of essential tremor. Journal of Neurophysiology, 97(5), 3219-3228. https://doi.org/10.1152/jn.00477.2006
Rivera-Urbina, G. N., Molero-Chamizo, A., & Nitsche, M. A. (2022). Discernible effects of tDCS over the primary motor and posterior parietal cortex on different stages of motor learning. Brain Structure and Function, 227, 1115–1131. https://doi.org/10.1007/s00429-021-02451-0
Roig, M., Ritterband-Rosenbaum, A., Lundbye-Jensen, J., & Nielsen, J. B. (2014). Aging increases the susceptibility to motor memory interference and reduces off-line gains in motor skill learning. Neurobiology of Aging, 35(8), 1892–1900. https://doi.org/10.1016/j.neurobiolaging.2014.02.022
Ross, B., & Lopez, M. D. (2020). 40-Hz Binaural beats enhance training to mitigate the attentional blink. Scientific Reports, 10(1), Article 7002. https://doi.org/10.1038/s41598-020-63980-y
Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6(4), 285–296. https://doi.org/10.1038/nrn1650
Schubert, C., Dabbagh, A., Classen, J., Krämer, U. M., & Tzvi, E. (2021). Alpha oscillations modulate premotor-cerebellar connectivity in motor learning: Insights from transcranial alternating current stimulation. NeuroImage, 241, 118410. https://doi.org/10.1016/j.neuroimage.2021.118410
Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005
Shekar, L., Suryavanshi, C. A., & Nayak, K. R. (2018). Effect of alpha and gamma binaural beats on reaction time and short-term memory. National Journal of Physiology, Pharmacy and Pharmacology, 8(6), 829–833. https://doi.org/10.5455/njppp.2018.8.1246506022018
Smith, C. D., Umberger, G. H., Manning, E. L., Slevin, J. T., Wekstein, D. R., Schmitt, F. A., Markesbery, W. R., Zhang, Z., Gerhardt, G. A., Kryscio, R. J., & Gash, D. M. (1999). Critical decline in fine motor hand movements in human aging. Neurology, 53(7), 1458. https://doi.org/10.1212/wnl.53.7.1458
Solcà, M., Mottaz, A., & Guggisberg, A. G. (2016). Binaural beats increase interhemispheric alpha-band coherence between auditory cortices. Hearing Research, 332, 233–237. https://doi.org/10.1016/j.heares.2015.09.011
Sung, H.-C., Lee, W.-L., Li, H.-M., Lin, C.-Y., Wu, Y.-Z., Wang, J.-J., & Li, T.-L. (2017). Familiar music listening with binaural beats for older people with depressive symptoms in retirement homes. Neuropsychiatry, 7(4), 347–353. https://doi.org/10.4172/Neuropsychiatry.1000221
Taga, M., Curci, A., Lacal, I., & Turner, D. (2019). The N100 TEP as a neural predictor of motor learning: A TMS-EEG study. Brain Stimulation, 12(2), 445–446. https://doi.org/10.1016/j.brs.2018.12.445
Tarr, B., Launay, J., & Dunbar, R. I. (2014). Music and social bonding: “self-other” merging and neurohormonal mechanisms. Frontiers in Psychology, 5, 1096. https://doi.org/10.3389/fpsyg.2014.01096
Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550
Wahbeh, H., Calabrese, C., & Zwickey, H. (2007). Binaural beat technology in humans: A pilot study to assess psychologic and physiologic effects. The Journal of Alternative and Complementary Medicine, 13(1), 25–32. https://doi.org/10.1089/acm.2006.6196
Wang, B., Fan, Y., Lu, M., Li, S., Song, Z., Peng, X., Zhang, R., Lin, Q., He, Y., Wang, J., & Huang, R. (2013). Brain anatomical networks in world class gymnasts: A DTI tractography study. NeuroImage, 65, 476–487. https://doi.org/10.1016/j.neuroimage.2012.10.007
Wang, B., Xiao, S., Yu, C., Zhou, J., & Fu, W. (2021). Effects of transcranial direct current stimulation combined with physical training on the excitability of the motor cortex, physical performance, and motor learning: A systematic review. Frontiers in Neuroscience, 15, 336. https://doi.org/10.3389/fnins.2021.648354
Wang, L., Zhang, Y., Zhang, J., Sang, L., Li, P., Yan, R., Qiu, M., & Liu, C. (2019). Aging changes effective connectivity of motor networks during motor execution and motor imagery. Frontiers in Aging Neuroscience, 11, 312. https://doi.org/10.3389/fnagi.2019.00312
Wenk, G. L., Pierce, D. J., Struble, R. G., Price, D. L., & Cork, L. C. (1989). Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiology of Aging, 10(1), 11–19. https://doi.org/10.1016/S0197-4580(89)80005-3
Woodard, K. F., & Fairbrother, J. T. (2020). Cognitive loading during and after continuous task execution alters the effects of self-controlled knowledge of results. Frontiers in Psychology, 11, 1046. https://doi.org/10.3389/fpsyg.2020.01046
Young, C.-W., Tsai, C.-Y., Zheng, S.-R., Wang, L.-P., Chen, H.-W., & Ay, C. (2014). Investigate the effect of EEG for relaxation using binaural beats. In Proceedings of the 7th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering (ISMAB). Yilan, Taiwan. https://doi.org/10.2196/resprot.4251
Yu, J.-H., & Sim, K.-B. (2016). Classification of color imagination using Emotiv EPOC and event-related potential in electroencephalogram. Optik, 127(20), 9711–9718. https://doi.org/10.1016/j.ijleo.2016.07.074
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mahla Azizzadeh Herozi, Ali-Mohammad Kamali, Fatemeh Shamsi, Mohammad Nami
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).