Resting-State EEG Alteration Over the Loreta Z-Score Neurofeedback in Aphasia
DOI:
https://doi.org/10.15540/nr.10.3.146Keywords:
aphasia, phase-amplitude coupling, complexity, neurofeedback, loretaAbstract
Objectives. Aphasia is an acquired language disorder resulting from a brain injury which affects the brain’s electrical activity. Neurofeedback (NFB) is known to synchronize neural oscillations and normalize brain wave abnormalities in several disorders. In this study, we aimed to investigate EEG signals in aphasia and the possible positive effect of Loreta z-score neurofeedback (LZNFB) treatment on improving EEG disturbances and symptoms in aphasia. Methods. Thirteen chronic aphasics and 10 unimpaired nonaphasic subjects were investigated in this study. Clinical assessments were used for the aphasic group at baseline and after 15 sessions of LZNFB to illustrate behavioral improvement. To estimate signal disruption and its alteration over the treatment, EEG signals were acquired referred to as resting-state eyes-closed condition in aphasic group during pretreatment and posttreatment as well as in the nonaphasic control group. We then investigated brain complexity and phase-amplitude coupling (PAC) in groups and compared the results. Results. Our EEG findings were congruent with clinical improvement and showed that after treatment, complexity and PAC changed to a normal level. Conclusion. We conclude that LZNFB treatment was effective in decreasing EEG disturbances and symptoms in aphasia. We think that our findings in complexity and PAC could provide important insights into the electrophysiological profile in aphasia and its alterations after treatment.
References
Bichsel, O., Stieglitz, L. H., Oertel, M. F., Baumann, C. R., Gassert, R., & Imbach, L. L. (2021). Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements. Scientific Reports, 11(1), Article 7973. https://doi.org/10.1038/s41598-021-87031-2
Bonnefond, M., & Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PLoS One, 10(6), Article e0128667. https://doi.org/10.1371/journal.pone.0128667
Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626–1628. https://doi.org/10.1126/science.1128115
Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506–515. https://doi.org/10.1016/j.tics.2010.09.001
Cohen, M. X., Elger, C. E., & Fell, J. (2008). Oscillatory activity and phase–amplitude coupling in the human medial frontal cortex during decision making. Journal of cognitive neuroscience, 21(2), 390–402. https://doi.org/10.1162/jocn.2008.21020
Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786. https://doi.org/10.3758/BF03196772
Cortese, A., Amano, K., Koizumi, A., Lau, H., & Kawato, M. (2017). Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants. NeuroImage, 149, 323–337. https://doi.org/10.1016/j.neuroimage.2017.01.069
de Hemptinne, C., Ryapolova-Webb, E. S., Air, E. L., Garcia, P. A., Miller, K. J., Ojemann, J. G., Ostrem, J. L., Galifianakis, N. B., & Starr, P. A. (2013). Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease. Proceedings of the National Academy of Sciences, 110(12), 4780¬–4785. https://doi.org/10.1073/pnas.1214546110
Delgado-Bonal, A., & Marshak, A. (2019). Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6), 541. https://doi.org/10.3390/e21060541
Edakawa, K., Yanagisawa, T., Kishima, H., Fukuma, R., Oshino, S., Khoo, H. M., Kobayashi, M., Tanaka, M., & Yoshimine, T. (2016). Detection of epileptic seizures using phase–amplitude coupling in intracranial electroencephalography. Scientific Reports, 6(1), Article 25422. https://doi.org/10.1038/srep25422
Enriquez-Geppert, S., Smit, D., Pimenta, M. G., & Arns, M. (2019). Neurofeedback as a treatment intervention in ADHD: Current evidence and practice. Current Psychiatry Reports, 21, Article 46. https://doi.org/10.1007/s11920-019-1021-4
Faridi, A., Taremian, F., Thatcher, R. W., Dadashi, M., & Moloodi, R. (2022). Comparison of LORETA Z score neurofeedback and cognitive rehabilitation in terms of their effectiveness in reducing craving in opioid addicts. Basic and Clinical Neuroscience, 13(1), 81–96. https://doi.org/10.32598/bcn.2021.1946.1
Faridi, F., Ameri, H., Nosratabadi, M., Hejazi, S. M. A., & Thatcher, R. (2021). Language rehabilitation of TBI patient by LORETA Z score neurofeedback. NeuroRegulation, 8(2), 121–121. https://doi.org/10.15540/nr.8.2.121
Frey, L. C., & Koberda, J. L. (2015). LORETA Z-score neurofeedback in patients with medically refractory epilepsy. Journal of Neurology and Neurobiology, 1(1). https://doi.org/10.16966/2379-7150.102
Grin-Yatsenko, V. A., Othmer, S., Ponomarev, V. A., Evdokimov, S. A., Konoplev, Y. Y., & Kropotov, J. D. (2018). Infra-low frequency neurofeedback in depression: Three case studies. NeuroRegulation, 5(1), 30–42. https://doi.org/10.15540/nr.5.1.30
Händel, B., & Haarmeier, T. (2009). Cross-frequency coupling of brain oscillations indicates the success in visual motion discrimination. NeuroImage, 45(3), 1040–1046. https://doi.org/10.1016/j.neuroimage.2008.12.013
Helfrich, R. F., Herrmann, C. S., Engel, A. K., & Schneider, T. R. (2016). Different coupling modes mediate cortical cross-frequency interactions. NeuroImage, 140, 76–82. https://doi.org/10.1016/j.neuroimage.2015.11.035
Hirano, Y., & Tamura, S. (2021). Recent findings on neurofeedback training for auditory hallucinations in schizophrenia. Current Opinion in Psychiatry, 34(3), 245–252. https://doi.org/10.1097/YCO.0000000000000693
Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–156. https://doi.org/10.1016/0010-4825(88)90041-8
Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., Lee, S. M., Gabrieli, J. D. E., Tager-Flusberg, H. B., Joseph, R. M., Herbert, M. R., Hämäläinen, M. S., & Kenet, T. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Sciences, 110(8), 3107–3112. https://doi.org/10.1073/pnas.1214533110
Klonowski, W. (2009). Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomedical Physics, 3(1), Article 2. https://doi.org/10.1186/1753-4631-3-2
Koberda, J. L. (2014). Z-score LORETA neurofeedback as a potential therapy in cognitive dysfunction and dementia. Journal of Psychology & Clinical Psychiatry, 1(6), Article 00037. https://doi.org/10.15406/jpcpy.2014.01.00037
Koberda, J. L. (2015). LORETA Z-score neurofeedback-effectiveness in rehabilitation of patients suffering from traumatic brain injury. Journal of Neurology and Neurobiology, 1(4), 1–9. https://doi.org/10.16966/2379-7150.113
Koberda, J. L., Moses, A., Koberda, L., & Koberda, P. (2012). Cognitive enhancement using 19-electrode z-score neurofeedback. Journal of Neurotherapy, 16(3), 224–230. https://doi.org/10.1080/10874208.2012.705769
Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., Van De Ville, D., Vuilleumier, P., & Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral Cortex, 27(2), 1193–1202. https://doi.org/10.1093/cercor/bhv311
Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904–1911. https://doi.org/10.1152/jn.00263.2005
Lam, J. M., & Wodchis, W. P. (2010). The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents. Medical Care, 48(4), 380–387. https://doi.org/10.1097/MLR.0b013e3181ca2647
Liu, X., Pu, Y., Wu, D., Zhang, Z., Hu, X., & Liu, L. (2019). Cross-frequency coupling between cerebral blood flow velocity and EEG in ischemic stroke patients with large vessel occlusion. Frontiers in Neurology, 10, Article 194. https://doi.org/10.3389/fneur.2019.00194
Lizarazu, M., Lallier, M., & Molinaro, N. (2019). Phase−amplitude coupling between theta and gamma oscillations adapts to speech rate. Annals of the New York Academy of Sciences, 1453(1), 140–152. https://doi.org/10.1111/nyas.14099
Marebwa, B. K., Fridriksson, J., Yourganov, G., Feenaughty, L., Rorden, C., & Bonilha, L. (2017). Chronic post-stroke aphasia severity is determined by fragmentation of residual white matter networks. Scientific Reports, 7(1), Article 8188. https://doi.org/10.1038/s41598-017-07607-9
McBride, J. C., Zhao, X., Munro, N. B., Smith, C. D., Jicha, G. A., Hively, L., Broster, L. S., Schmitt, F. A., Kryscio, R., J., & Jiang, Y. (2014). Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer's disease. Computer Methods and Programs in Biomedicine, 114(2), 153–163. https://doi.org/10.1016/j.cmpb.2014.01.019
Mohammadi, M. R., Khaleghi, A., Nasrabadi, A. M., Rafieivand, S., Begol, M., & Zarafshan, H. (2016). EEG classification of ADHD and normal children using non-linear features and neural network. Biomedical Engineering Letters, 6(2), 66–73. https://doi.org/10.1007/s13534-016-0218-2
Mottaz, A., Corbet, T., Doganci, N., Magnin, C., Nicolo, P., Schnider, A., & Guggisberg, A. G. (2018). Modulating functional connectivity after stroke with neurofeedback: Effect on motor deficits in a controlled cross-over study. NeuroImage: Clinical, 20, 336–346. https://doi.org/10.1016/j.nicl.2018.07.029
Mroczkowska, D., Białkowska, J., & Rakowska, A. (2014). Neurofeedback as supportive therapy after stroke. Case report. Postępy Psychiatrii i Neurologii, 23(4), 190–201. https://doi.org/10.1016/j.pin.2014.09.002
Nan, W., Dias, A. P. B., & Rosa, A. C. (2019). Neurofeedback training for cognitive and motor function rehabilitation in chronic stroke: two case reports. Frontiers in Neurology, 10, 800. https://doi.org/10.3389/fneur.2019.00800
Nicholson, A. A., Ros, T., Frewen, P. A., Densmore, M., Théberge, J., Kluetsch, R. C., Jetly, R., & Lanius, R. A. (2016). Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder. NeuroImage: Clinical, 12, 506–516. https://doi.org/10.1016/j.nicl.2016.07.006
Nicolo, P., Rizk, S., Magnin, C., Di Pietro, M., Schnider, A., & Guggisberg, A. G. (2015). Coherent neural oscillations predict future motor and language improvement after stroke. Brain, 138(10), 3048–3060. https://doi.org/10.1093/brain/awv200
Nilipour, R., Pour Shahbaz, A., Ghoreishi, Z. S., & Yousefi, A. (2016). Reliability and validity of Persian aphasia battery test. Iranian Journal of Ageing, 10(4), 182–191.
Noda, Y., Zomorrodi, R., Saeki, T., Rajji, T. K., Blumberger, D. M., Daskalakis, Z. J., & Nakamura, M. (2017). Resting-state EEG gamma power and theta–gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clinical Neurophysiology, 128(3), 424–432. https://doi.org/10.1016/j.clinph.2016.12.023
Okazaki, R., Takahashi, T., Ueno, K., Takahashi, K., Higashima, M., & Wada, Y. (2013). Effects of electroconvulsive therapy on neural complexity in patients with depression: Report of three cases. Journal of Affective Disorders, 150(2), 389–392. https://doi.org/10.1016/j.jad.2013.04.029
Okazaki, R., Takahashi, T., Ueno, K., Takahashi, K., Ishitobi, M., Kikuchi, M., Higashima, M., & Wada, Y. (2015). Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: A multiscale entropy approach. Frontiers in Human Neuroscience, 9, 106. https://doi.org/10.3389/fnhum.2015.00106
Özkurt, T. E., & Schnitzler, A. (2011). A critical note on the definition of phase–amplitude cross-frequency coupling. Journal of Neuroscience Methods, 201(2), 438–443. https://doi.org/10.1016/j.jneumeth.2011.08.014
Prinsloo, S., Rosenthal, D. I., Lyle, R., Garcia, S. M., Gabel-Zepeda, S., Cannon, R., Bruera, E., & Cohen, L. (2019). Exploratory study of low resolution electromagnetic tomography (LORETA) real-time Z-score feedback in the treatment of pain in patients with head and neck cancer. Brain Topography, 32, 283–285. https://doi.org/10.1007/s10548-018-0686-z
Ramot, M., Kimmich, S., Gonzalez-Castillo, J., Roopchansingh, V., Popal, H., White, E., Gotts, S. J., & Martin, A. (2017). Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback. eLife, 6, Article e28974. https://doi.org/10.7554/eLife.28974
Ros, T., Baars, B. J., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Frontiers in Human Neuroscience, 8, 1008. https://doi.org/10.3389/fnhum.2014.01008
Rozelle, G. R., & Budzynski, T. H. (1995). Neurotherapy for stroke rehabilitation: A single case study. Biofeedback and Self-regulation, 20(3), 211–228. https://doi.org/10.1007/BF01474514
Salimi, M., Javadi, A.-H., Nazari, M., Bamdad, S., Tabasi, F., Parsazadegan, T., Ayene, F., Karimian, M., Gholami-Mahtaj, L., Shadnia, S., Jamaati, H., Salimi, A., & Raoufy, M. R. (2022). Nasal air puff promotes default mode network activity in mechanically ventilated comatose patients: A noninvasive brain stimulation approach. Neuromodulation, 25(8), 1351–1363. https://doi.org/10.1016/j.neurom.2021.11.003
Sevcik, C. (2010). A procedure to estimate the fractal dimension of waveforms. arXiv preprint arXiv:1003.5266. https://doi.org/10.48550/arXiv.1003.5266
Shah-Basak, P. P., Sivaratnam, G., Teti, S., Francois-Nienaber, A., Yossofzai, M., Armstrong, S., Nayar, S., Jokel, R., & Meltzer, J. (2020). High definition transcranial direct current stimulation modulates abnormal neurophysiological activity in post-stroke aphasia. Scientific Reports, 10(1), 1–18. https://doi.org/10.1038/s41598-020-76533-0
Sho'ouri, N., Firoozabadi, M., & Badie, K. (2019). Neurofeedback training protocols based on selecting distinctive features and identifying appropriate channels to enhance performance in novice visual artists. Biomedical Signal Processing and Control, 49, 308–321. https://doi.org/10.1016/j.bspc.2018.12.013
Siegrist, M. (1997). Test-retest reliability of different versions of the Stroop test. The Journal of Psychology, 131(3), 299–306. https://doi.org/10.1080/00223989709603516
Sun, R., Wong, W.-w., Wang, J., & Tong, R. K.-y. (2017). Changes in electroencephalography complexity using a brain computer interface-motor observation training in chronic stroke patients: a fuzzy approximate entropy analysis. Frontiers in Human Neuroscience, 11, 444. https://doi.org/10.3389/fnhum.2017.00444
Szelies, B., Mielke, R., Kessler, J., & Heiss, W.-D. (2002). Prognostic relevance of quantitative topographical EEG in patients with poststroke aphasia. Brain and Language, 82(1), 87–94. https://doi.org/10.1016/S0093-934X(02)00004-4
Takahashi, T., Cho, R. Y., Mizuno, T., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y. (2010). Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis. NeuroImage, 51(1), 173–182. https://doi.org/10.1016/j.neuroimage.2010.02.009
Thatcher, R. W. (2010). LORETA Z score biofeedback. Neuroconnections, December, 9–13.
Tian, Y., Zhang, H., Xu, W., Zhang, H., Yang, L., Zheng, S., & Shi, Y. (2017). Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task. Frontiers in Human Neuroscience, 11, 437. https://doi.org/10.3389/fnhum.2017.00437
Tononi, G. (2010). Information integration: Its relevance to brain function and consciousness. Archives Italiennes de Biologie, 148(3), 299–322.
Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta–gamma coupling increases during the learning of item–context associations. Proceedings of the National Academy of Sciences, 106(49), 20942–20947. https://doi.org/10.1073/pnas.0911331106
Tzvi, E., Verleger, R., Münte, T. F., & Krämer, U. M. (2016). Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning. NeuroImage, 141, 60–70. https://doi.org/10.1016/j.neuroimage.2016.07.019
Vivekananda, U., Bush, D., Bisby, J. A., Baxendale, S., Rodionov, R., Diehl, B., Chowdhury, F. A., McEvoy, A. W., Miserocchi, A., Walker, M. C., & Burgess, N. (2021). Theta power and theta‐gamma coupling support long‐term spatial memory retrieval. Hippocampus, 31(2), 213–220. https://doi.org/10.1002/hipo.23284
Warren, J. E., Crinion, J. T., Lambon Ralph, M. A., & Wise, R. J. S. (2009). Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain, 132(12), 3428–3442. https://doi.org/10.1093/brain/awp270
Wu, D., Wang, J., & Yuan, Y. (2015). Effects of transcranial direct current stimulation on naming and cortical excitability in stroke patients with aphasia. Neuroscience Letters, 589, 115–120. https://doi.org/10.1016/j.neulet.2015.01.045
Yang, M., Yang, P., Fan, Y.-S., Li, J., Yao, D., Liao, W., & Chen, H. (2018). Altered structure and intrinsic functional connectivity in post-stroke aphasia. Brain Topography, 31(2), 300–310. https://doi.org/10.1007/s10548-017-0594-7
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Farnaz Faridi, Sobhan Bamdad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).