Resting-State EEG Alteration Over the Loreta Z-Score Neurofeedback in Aphasia

Authors

  • Farnaz Faridi Mrs
  • Sobhan Bamdad Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran

DOI:

https://doi.org/10.15540/nr.10.3.146

Keywords:

aphasia, phase-amplitude coupling, complexity, neurofeedback, loreta

Abstract

Objectives. Aphasia is an acquired language disorder resulting from a brain injury which affects the brain’s electrical activity. Neurofeedback (NFB) is known to synchronize neural oscillations and normalize brain wave abnormalities in several disorders. In this study, we aimed to investigate EEG signals in aphasia and the possible positive effect of Loreta z-score neurofeedback (LZNFB) treatment on improving EEG disturbances and symptoms in aphasia. Methods. Thirteen chronic aphasics and 10 unimpaired nonaphasic subjects were investigated in this study. Clinical assessments were used for the aphasic group at baseline and after 15 sessions of LZNFB to illustrate behavioral improvement. To estimate signal disruption and its alteration over the treatment, EEG signals were acquired referred to as resting-state eyes-closed condition in aphasic group during pretreatment and posttreatment as well as in the nonaphasic control group. We then investigated brain complexity and phase-amplitude coupling (PAC) in groups and compared the results. Results. Our EEG findings were congruent with clinical improvement and showed that after treatment, complexity and PAC changed to a normal level. Conclusion. We conclude that LZNFB treatment was effective in decreasing EEG disturbances and symptoms in aphasia. We think that our findings in complexity and PAC could provide important insights into the electrophysiological profile in aphasia and its alterations after treatment.

References

Bichsel, O., Stieglitz, L. H., Oertel, M. F., Baumann, C. R., Gassert, R., & Imbach, L. L. (2021). Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements. Scientific Reports, 11(1), Article 7973. https://doi.org/10.1038/s41598-021-87031-2

Bonnefond, M., & Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PLoS One, 10(6), Article e0128667. https://doi.org/10.1371/journal.pone.0128667

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626–1628. https://doi.org/10.1126/science.1128115

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506–515. https://doi.org/10.1016/j.tics.2010.09.001

Cohen, M. X., Elger, C. E., & Fell, J. (2008). Oscillatory activity and phase–amplitude coupling in the human medial frontal cortex during decision making. Journal of cognitive neuroscience, 21(2), 390–402. https://doi.org/10.1162/jocn.2008.21020

Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786. https://doi.org/10.3758/BF03196772

Cortese, A., Amano, K., Koizumi, A., Lau, H., & Kawato, M. (2017). Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants. NeuroImage, 149, 323–337. https://doi.org/10.1016/j.neuroimage.2017.01.069

de Hemptinne, C., Ryapolova-Webb, E. S., Air, E. L., Garcia, P. A., Miller, K. J., Ojemann, J. G., Ostrem, J. L., Galifianakis, N. B., & Starr, P. A. (2013). Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease. Proceedings of the National Academy of Sciences, 110(12), 4780¬–4785. https://doi.org/10.1073/pnas.1214546110

Delgado-Bonal, A., & Marshak, A. (2019). Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6), 541. https://doi.org/10.3390/e21060541

Edakawa, K., Yanagisawa, T., Kishima, H., Fukuma, R., Oshino, S., Khoo, H. M., Kobayashi, M., Tanaka, M., & Yoshimine, T. (2016). Detection of epileptic seizures using phase–amplitude coupling in intracranial electroencephalography. Scientific Reports, 6(1), Article 25422. https://doi.org/10.1038/srep25422

Enriquez-Geppert, S., Smit, D., Pimenta, M. G., & Arns, M. (2019). Neurofeedback as a treatment intervention in ADHD: Current evidence and practice. Current Psychiatry Reports, 21, Article 46. https://doi.org/10.1007/s11920-019-1021-4

Faridi, A., Taremian, F., Thatcher, R. W., Dadashi, M., & Moloodi, R. (2022). Comparison of LORETA Z score neurofeedback and cognitive rehabilitation in terms of their effectiveness in reducing craving in opioid addicts. Basic and Clinical Neuroscience, 13(1), 81–96. ‎ https://doi.org/10.32598/bcn.2021.1946.1

Faridi, F., Ameri, H., Nosratabadi, M., Hejazi, S. M. A., & Thatcher, R. (2021). Language rehabilitation of TBI patient by LORETA Z score neurofeedback. NeuroRegulation, 8(2), 121–121. https://doi.org/10.15540/nr.8.2.121

Frey, L. C., & Koberda, J. L. (2015). LORETA Z-score neurofeedback in patients with medically refractory epilepsy. Journal of Neurology and Neurobiology, 1(1). https://doi.org/10.16966/2379-7150.102

Grin-Yatsenko, V. A., Othmer, S., Ponomarev, V. A., Evdokimov, S. A., Konoplev, Y. Y., & Kropotov, J. D. (2018). Infra-low frequency neurofeedback in depression: Three case studies. NeuroRegulation, 5(1), 30–42. https://doi.org/10.15540/nr.5.1.30

Händel, B., & Haarmeier, T. (2009). Cross-frequency coupling of brain oscillations indicates the success in visual motion discrimination. NeuroImage, 45(3), 1040–1046. https://doi.org/10.1016/j.neuroimage.2008.12.013

Helfrich, R. F., Herrmann, C. S., Engel, A. K., & Schneider, T. R. (2016). Different coupling modes mediate cortical cross-frequency interactions. NeuroImage, 140, 76–82. https://doi.org/10.1016/j.neuroimage.2015.11.035

Hirano, Y., & Tamura, S. (2021). Recent findings on neurofeedback training for auditory hallucinations in schizophrenia. Current Opinion in Psychiatry, 34(3), 245–252. https://doi.org/10.1097/YCO.0000000000000693

Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–156. https://doi.org/10.1016/0010-4825(88)90041-8

Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., Lee, S. M., Gabrieli, J. D. E., Tager-Flusberg, H. B., Joseph, R. M., Herbert, M. R., Hämäläinen, M. S., & Kenet, T. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Sciences, 110(8), 3107–3112. https://doi.org/10.1073/pnas.1214533110

Klonowski, W. (2009). Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomedical Physics, 3(1), Article 2. https://doi.org/10.1186/1753-4631-3-2

Koberda, J. L. (2014). Z-score LORETA neurofeedback as a potential therapy in cognitive dysfunction and dementia. Journal of Psychology & Clinical Psychiatry, 1(6), Article 00037. https://doi.org/10.15406/jpcpy.2014.01.00037

Koberda, J. L. (2015). LORETA Z-score neurofeedback-effectiveness in rehabilitation of patients suffering from traumatic brain injury. Journal of Neurology and Neurobiology, 1(4), 1–9. https://doi.org/10.16966/2379-7150.113

Koberda, J. L., Moses, A., Koberda, L., & Koberda, P. (2012). Cognitive enhancement using 19-electrode z-score neurofeedback. Journal of Neurotherapy, 16(3), 224–230. https://doi.org/10.1080/10874208.2012.705769

Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., Van De Ville, D., Vuilleumier, P., & Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral Cortex, 27(2), 1193–1202. https://doi.org/10.1093/cercor/bhv311

Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904–1911. https://doi.org/10.1152/jn.00263.2005

Lam, J. M., & Wodchis, W. P. (2010). The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents. Medical Care, 48(4), 380–387. https://doi.org/10.1097/MLR.0b013e3181ca2647

Liu, X., Pu, Y., Wu, D., Zhang, Z., Hu, X., & Liu, L. (2019). Cross-frequency coupling between cerebral blood flow velocity and EEG in ischemic stroke patients with large vessel occlusion. Frontiers in Neurology, 10, Article 194. https://doi.org/10.3389/fneur.2019.00194

Lizarazu, M., Lallier, M., & Molinaro, N. (2019). Phase−amplitude coupling between theta and gamma oscillations adapts to speech rate. Annals of the New York Academy of Sciences, 1453(1), 140–152. https://doi.org/10.1111/nyas.14099

Marebwa, B. K., Fridriksson, J., Yourganov, G., Feenaughty, L., Rorden, C., & Bonilha, L. (2017). Chronic post-stroke aphasia severity is determined by fragmentation of residual white matter networks. Scientific Reports, 7(1), Article 8188. https://doi.org/10.1038/s41598-017-07607-9

McBride, J. C., Zhao, X., Munro, N. B., Smith, C. D., Jicha, G. A., Hively, L., Broster, L. S., Schmitt, F. A., Kryscio, R., J., & Jiang, Y. (2014). Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer's disease. Computer Methods and Programs in Biomedicine, 114(2), 153–163. https://doi.org/10.1016/j.cmpb.2014.01.019

Mohammadi, M. R., Khaleghi, A., Nasrabadi, A. M., Rafieivand, S., Begol, M., & Zarafshan, H. (2016). EEG classification of ADHD and normal children using non-linear features and neural network. Biomedical Engineering Letters, 6(2), 66–73. https://doi.org/10.1007/s13534-016-0218-2

Mottaz, A., Corbet, T., Doganci, N., Magnin, C., Nicolo, P., Schnider, A., & Guggisberg, A. G. (2018). Modulating functional connectivity after stroke with neurofeedback: Effect on motor deficits in a controlled cross-over study. NeuroImage: Clinical, 20, 336–346. https://doi.org/10.1016/j.nicl.2018.07.029

Mroczkowska, D., Białkowska, J., & Rakowska, A. (2014). Neurofeedback as supportive therapy after stroke. Case report. Postępy Psychiatrii i Neurologii, 23(4), 190–201. https://doi.org/10.1016/j.pin.2014.09.002

Nan, W., Dias, A. P. B., & Rosa, A. C. (2019). Neurofeedback training for cognitive and motor function rehabilitation in chronic stroke: two case reports. Frontiers in Neurology, 10, 800. https://doi.org/10.3389/fneur.2019.00800

Nicholson, A. A., Ros, T., Frewen, P. A., Densmore, M., Théberge, J., Kluetsch, R. C., Jetly, R., & Lanius, R. A. (2016). Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder. NeuroImage: Clinical, 12, 506–516. https://doi.org/10.1016/j.nicl.2016.07.006

Nicolo, P., Rizk, S., Magnin, C., Di Pietro, M., Schnider, A., & Guggisberg, A. G. (2015). Coherent neural oscillations predict future motor and language improvement after stroke. Brain, 138(10), 3048–3060. https://doi.org/10.1093/brain/awv200

Nilipour, R., Pour Shahbaz, A., Ghoreishi, Z. S., & Yousefi, A. (2016). Reliability and validity of Persian aphasia battery test. Iranian Journal of Ageing, 10(4), 182–191.

Noda, Y., Zomorrodi, R., Saeki, T., Rajji, T. K., Blumberger, D. M., Daskalakis, Z. J., & Nakamura, M. (2017). Resting-state EEG gamma power and theta–gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clinical Neurophysiology, 128(3), 424–432. https://doi.org/10.1016/j.clinph.2016.12.023

Okazaki, R., Takahashi, T., Ueno, K., Takahashi, K., Higashima, M., & Wada, Y. (2013). Effects of electroconvulsive therapy on neural complexity in patients with depression: Report of three cases. Journal of Affective Disorders, 150(2), 389–392. https://doi.org/10.1016/j.jad.2013.04.029

Okazaki, R., Takahashi, T., Ueno, K., Takahashi, K., Ishitobi, M., Kikuchi, M., Higashima, M., & Wada, Y. (2015). Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: A multiscale entropy approach. Frontiers in Human Neuroscience, 9, 106. https://doi.org/10.3389/fnhum.2015.00106

Özkurt, T. E., & Schnitzler, A. (2011). A critical note on the definition of phase–amplitude cross-frequency coupling. Journal of Neuroscience Methods, 201(2), 438–443. https://doi.org/10.1016/j.jneumeth.2011.08.014

Prinsloo, S., Rosenthal, D. I., Lyle, R., Garcia, S. M., Gabel-Zepeda, S., Cannon, R., Bruera, E., & Cohen, L. (2019). Exploratory study of low resolution electromagnetic tomography (LORETA) real-time Z-score feedback in the treatment of pain in patients with head and neck cancer. Brain Topography, 32, 283–285. https://doi.org/10.1007/s10548-018-0686-z

Ramot, M., Kimmich, S., Gonzalez-Castillo, J., Roopchansingh, V., Popal, H., White, E., Gotts, S. J., & Martin, A. (2017). Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback. eLife, 6, Article e28974. https://doi.org/10.7554/eLife.28974

Ros, T., Baars, B. J., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Frontiers in Human Neuroscience, 8, 1008. https://doi.org/10.3389/fnhum.2014.01008

Rozelle, G. R., & Budzynski, T. H. (1995). Neurotherapy for stroke rehabilitation: A single case study. Biofeedback and Self-regulation, 20(3), 211–228. https://doi.org/10.1007/BF01474514

Salimi, M., Javadi, A.-H., Nazari, M., Bamdad, S., Tabasi, F., Parsazadegan, T., Ayene, F., Karimian, M., Gholami-Mahtaj, L., Shadnia, S., Jamaati, H., Salimi, A., & Raoufy, M. R. (2022). Nasal air puff promotes default mode network activity in mechanically ventilated comatose patients: A noninvasive brain stimulation approach. Neuromodulation, 25(8), 1351–1363. https://doi.org/10.1016/j.neurom.2021.11.003

Sevcik, C. (2010). A procedure to estimate the fractal dimension of waveforms. arXiv preprint arXiv:1003.5266. https://doi.org/10.48550/arXiv.1003.5266

Shah-Basak, P. P., Sivaratnam, G., Teti, S., Francois-Nienaber, A., Yossofzai, M., Armstrong, S., Nayar, S., Jokel, R., & Meltzer, J. (2020). High definition transcranial direct current stimulation modulates abnormal neurophysiological activity in post-stroke aphasia. Scientific Reports, 10(1), 1–18. https://doi.org/10.1038/s41598-020-76533-0

Sho'ouri, N., Firoozabadi, M., & Badie, K. (2019). Neurofeedback training protocols based on selecting distinctive features and identifying appropriate channels to enhance performance in novice visual artists. Biomedical Signal Processing and Control, 49, 308–321. https://doi.org/10.1016/j.bspc.2018.12.013

Siegrist, M. (1997). Test-retest reliability of different versions of the Stroop test. The Journal of Psychology, 131(3), 299–306. https://doi.org/10.1080/00223989709603516

Sun, R., Wong, W.-w., Wang, J., & Tong, R. K.-y. (2017). Changes in electroencephalography complexity using a brain computer interface-motor observation training in chronic stroke patients: a fuzzy approximate entropy analysis. Frontiers in Human Neuroscience, 11, 444. https://doi.org/10.3389/fnhum.2017.00444

Szelies, B., Mielke, R., Kessler, J., & Heiss, W.-D. (2002). Prognostic relevance of quantitative topographical EEG in patients with poststroke aphasia. Brain and Language, 82(1), 87–94. https://doi.org/10.1016/S0093-934X(02)00004-4

Takahashi, T., Cho, R. Y., Mizuno, T., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y. (2010). Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis. NeuroImage, 51(1), 173–182. https://doi.org/10.1016/j.neuroimage.2010.02.009

Thatcher, R. W. (2010). LORETA Z score biofeedback. Neuroconnections, December, 9–13.

Tian, Y., Zhang, H., Xu, W., Zhang, H., Yang, L., Zheng, S., & Shi, Y. (2017). Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task. Frontiers in Human Neuroscience, 11, 437. https://doi.org/10.3389/fnhum.2017.00437

Tononi, G. (2010). Information integration: Its relevance to brain function and consciousness. Archives Italiennes de Biologie, 148(3), 299–322.

Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta–gamma coupling increases during the learning of item–context associations. Proceedings of the National Academy of Sciences, 106(49), 20942–20947. https://doi.org/10.1073/pnas.0911331106

Tzvi, E., Verleger, R., Münte, T. F., & Krämer, U. M. (2016). Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning. NeuroImage, 141, 60–70. https://doi.org/10.1016/j.neuroimage.2016.07.019

Vivekananda, U., Bush, D., Bisby, J. A., Baxendale, S., Rodionov, R., Diehl, B., Chowdhury, F. A., McEvoy, A. W., Miserocchi, A., Walker, M. C., & Burgess, N. (2021). Theta power and theta‐gamma coupling support long‐term spatial memory retrieval. Hippocampus, 31(2), 213–220. https://doi.org/10.1002/hipo.23284

Warren, J. E., Crinion, J. T., Lambon Ralph, M. A., & Wise, R. J. S. (2009). Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain, 132(12), 3428–3442. https://doi.org/10.1093/brain/awp270

Wu, D., Wang, J., & Yuan, Y. (2015). Effects of transcranial direct current stimulation on naming and cortical excitability in stroke patients with aphasia. Neuroscience Letters, 589, 115–120. https://doi.org/10.1016/j.neulet.2015.01.045

Yang, M., Yang, P., Fan, Y.-S., Li, J., Yao, D., Liao, W., & Chen, H. (2018). Altered structure and intrinsic functional connectivity in post-stroke aphasia. Brain Topography, 31(2), 300–310. https://doi.org/10.1007/s10548-017-0594-7

Downloads

Published

2023-09-30

Issue

Section

Research Papers