Brain Connectivity, Acute Post-Concussion Symptoms, and Cognition in Adults With Concussion: A Quantitative Electroencephalography Study
DOI:
https://doi.org/10.15540/nr.10.2.94Keywords:
Default Mode Network, Salience Network, Frontoparietal Network, Post-Concussion Symptoms, Quantitative ElectroencephalographyAbstract
Mild traumatic brain injury (mTBI) accounts for 80–90% of all TBI. Post-mTBI symptoms are measured using the Post-Concussion Symptom Scale (PCSS); however, symptom heterogeneity limits specificity. Better understanding of the neuropathophysiology underlying post-concussion symptoms could enhance diagnostic accuracy. We explored the association between network connectivity, PCSS and neuropsychological functioning within 7 days post-mTBI. We hypothesized that network dysregulation would (a) correlate positively with PCSS scores and (b) correlate negatively with cognitive performance; and that (c) cognitive performance would correlate negatively with PCSS scores. Network activity was measured in 19 participants aged 21 to 65, following a medically diagnosed mTBI. Quantitative electroencephalography (qEEG) measured default mode, salience, and frontoparietal networks, while cognition was measured via neuropsychological assessment. Hypothesis (a) was not supported. Of the cognitive domains, support was only found for an association between network dysfunction and immediate memory. There was no association between neuropsychological performance and PCSS scores. PCSS scores were not a sensitive indicator of neuropsychological status and did not reflect the status of underlying brain network regulation. This study provides preliminary evidence for immediate memory as an indicator of altered network connectivity in acute mTBI. Evaluating neurophysiological and cognitive impacts of mTBI may improve understanding of individual recovery needs.
References
Allen, M. (2022). Exercise after a concussion: When is it OK and what if it makes you feel worse? Cognitive FX. https://www.cognitivefxusa.com/blog/exercise-after-a-concussion
Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., & Buckner, R. L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935. https://doi.org/10.1016/j.neuron.2007.10.038
Applied Neuroscience Inc. (2023). NeuroGuide with NeuroNavigator add-on tools. [Software]. https://appliedneuroscience.com/product/neuronavigator/
Bai, L., Yin, B., Lei, S., Li, T., Wang, S., Pan, Y., Gan, S., Jia, X., Li, X., Xiong, F., Yan, Z., & Bai, G. (2022). Reorganized hubs of brain functional networks following acute mild traumatic brain injury. Journal of Neurotrauma, 40(1–2), 63–73. https://doi.org/10.1089/neu.2021.0450
Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M. (2012). Measuring brain electrical activity to track recovery from sport-related concussion. Brain Injury, 26(1), 58–66. https://doi.org/10.3109/02699052.2011.608216
Bedard, M., Steffener, J., & Taler, V. (2020). Long-term cognitive impairment following single mild traumatic brain injury with loss of consciousness: Findings from the Canadian Longitudinal Study on Aging. Journal of Clinical and Experimental Neuropsychology, 42(4), 344–351. https://doi.org/10.1080/13803395.2020.1714552
Bonnelle, V., Ham, T., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695. https://doi.org/10.1073/pnas.1113455109
Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., Greenwood, R. J., & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31(38), 13442–13451. https://doi.org/10.1523/JNEUROSCI.1163-11.2011
Brodmann, K. (1909). Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. Leipzig, Germany: Johann Ambrosius Barth.
Cannon, R. L., Kerson, C., & Hampshire, A. (2011). sLORETA and fMRI detection of medial prefrontal default network anomalies in adult ADHD. Journal of Neurotherapy, 15(4), 358–373. https://doi.org/10.1080/10874208.2011.623093
Carroll, E. L., Outtrim, J. G., Forsyth, F., Manktelow, A. E., Hutchinson, P. J. A., Tenovuo, O., Posti, J. P., Wilson, L., Sahakian, B. J., Menon, D. K., & Newcombe, V. F. J. (2020). Mild traumatic brain injury recovery: A growth curve modelling analysis over 2 years. Journal of Neurology, 267(11), 3223–3234. https://doi.org/10.1007/s00415-020-09979-x
Carroll, L. J., Cassidy, J. D., Cancelliere, C., Côté, P., Hincapié, C. A., Kristman, V. L., Holm, L. W., Borg, J., Nygren-de Boussard, C., & Hartvigsen, J. (2014). Systematic review of the prognosis after mild traumatic brain injury in adults: Cognitive, psychiatric, and mortality outcomes: Results of the international collaboration on mild traumatic brain injury prognosis. Archives of Physical Medicine and Rehabilitation, 95(3 Suppl.), S152–S173. https://doi.org/10.1016/j.apmr.2013.08.300
Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences of the United States of America, 111(46), E4997–E5006. https://doi.org/10.1073/pnas.1415122111
Chenot, Q., Lepron, E., De Boissezon, X., & Scannella, S. (2021). Functional connectivity within the fronto-parietal network predicts complex task performance: A fNIRS study. Frontiers in Neuroergonomics, 2, 718176. https://doi.org/10.3389/fnrgo.2021.718176
Colantonio, A., Ratcliff, G., Chase, S., & Escobar, M. (2000). Is cognitive performance related to level of community integration many years after traumatic brain injury? Brain and Cognition, 44(1), 19–20. https://doi.org/10.1006/brcg.1999.1207
Custer, A., Sufrinko, A., Elbin, R. J., Covassin, T., Collins, M., & Kontos, A. (2016). High baseline postconcussion symptom scores and concussion outcomes in athletes. Journal of Athletic Training, 51(2), 136–141. https://doi.org/10.4085/1062-6050-51.2.12
D'Souza, M. M., Kumar, M., Choudhary, A., Kaur, P., Kumar, P., Rana, P., Trivedi, R., Sekhri, T., & Singh, A. K. (2020). Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study. The Neuroradiology Journal, 33(2), 186–197. https://doi.org/10.1177/1971400920901706
Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J. S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Rombouts, S. A. R. B. (2008). Reduced resting-state brain activity in the "default network" in normal aging. Cerebral Cortex, 18(8), 1856–1864. https://doi.org/10.1093/cercor/bhm207
de Freitas Cardoso, M. G., Faleiro, R. M., de Paula, J. J., Kummer, A., Caramelli, P., Teixeira, A. L., de Souza, L. C., & Miranda, A. S. (2019). Cognitive impairment following acute mild traumatic brain injury. Frontiers in Neurology, 10, 198. https://doi.org/10.3389/fneur.2019.00198
Dorsman, K. A., Weiner-Light, S., Staffaroni, A. M., Brown, J. A., Wolf, A., Cobigo, Y., Walters, S., Kramer, J. H., & Casaletto, K. B. (2020). Get moving! Increases in physical activity are associated with increasing functional connectivity trajectories in typically aging adults. Frontiers in Aging Neuroscience, 12, 104. https://doi.org/10.3389/fnagi.2020.00104
Electro-Cap International, Inc. (n.d.). Electro-Cap 19-channel system with Electro-Gel electroconductive gel [Apparatus].
Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105–118. https://doi.org/10.1038/nrn2979
Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neuroscience & Biobehavioral Reviews, 37(3), 384–400. https://doi.org/10.1016/j.neubiorev.2013.01.017
Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). London, UK: SAGE Publications Ltd.
Gardner, R. C., & Yaffe, K. (2015). Epidemiology of mild traumatic brain injury and neurodegenerative disease. Molecular and Cellular Neurosciences, 66(Part B), 75–80. https://doi.org/10.1016/j.mcn.2015.03.001
Gennarelli, T. (1971). Comparison of translational and rotational motions in experimental cerebral concussion. Paper presented at the 15th Stapp Car Crash Conference.
Gozt, A. K., Hellewell, S. C., Thorne, J., Thomas, E., Buhagiar, F., Markovic, S., Van Houselt, A., Ring, A., Arendts, G., Smedley, B., Van Schalkwyk, S., Brooks, P., Iliff, J., Celenza, A., Mukherjee, A., Xu, D., Robinson, S., Honeybul, S., Cowen, G., Licari, M., … Fitzgerald, M. (2021). Predicting outcome following mild traumatic brain injury: Protocol for the longitudinal, prospective, observational Concussion Recovery (CREST) cohort study. BMJ Open, 11(5), Article e046460. https://doi.org/10.1136/bmjopen-2020-046460
Gumm, K., Taylor, T., Orbons, K., Carey, L., & PTA Working Party (2011). Post traumatic amnesia screening and management guideline. The Royal Melbourne Hospital. https://www.connectivity.org.au/wp-content/uploads/2022/08/TRM01.01-Post-Traumatic-Amnesia-Screening-and-Management-V5.1_06.20.docx.converted.pdf
Ham, T. E., Bonnelle, V., Hellyer, P., Jilka, S., Robertson, I. H., Leech, R., & Sharp, D. J. (2014). The neural basis of impaired self-awareness after traumatic brain injury. Brain, 137(2), 586–597. https://doi.org/10.1093/brain/awt350
Han, K., Chapman, S. B., & Krawczyk, D. C. (2016). Disrupted intrinsic connectivity among default, dorsal attention, and frontoparietal control networks in individuals with chronic traumatic brain injury. Journal of the International Neuropsychological Society, 22(Suppl. 2), 263–279. https://doi.org/10.1017/s1355617715001393
Haneef, Z., Levin, H. S., Frost, J. D. Jr., & Mizrahi, E. M. (2013). Electroencephalography and quantitative electroencephalography in mild traumatic brain injury. Journal of Neurotrauma, 30(8), 653–656. https://doi.org/10.1089/neu.2012.2585
Harmon, K. G., Clugston, J. R., Dec, K., Hainline, B., Herring, S., Kane, S. F., Kontos, A. P., Leddy, J. J., McCrea, M., Poddar, S. K., Putukian, M., Wilson, J. C., & Roberts, W. O. (2019). American Medical Society for Sports Medicine position statement on concussion in sport. British Journal of Sports Medicine, 53(4), 213–225. https://doi.org/10.1136/bjsports-2018-100338
Hayes, J. P., Bigler, E. D., & Verfaellie, M. (2016). Traumatic brain injury as a disorder of brain connectivity. Journal of the International Neuropsychological Society, 22(2), 120–137. https://doi.org/10.1017/S1355617715000740
Ims, P. D. (2019). Re-training the injured brain: A case series in sLORETA neurofeedback as an acute concussion intervention in youth. Towson University
Iverson, G. L. (2019). Network analysis and precision rehabilitation for the post-concussion syndrome. Frontiers in Neurology, 10, 489. https://doi.org/10.3389/fneur.2019.00489
Jagnoor, J., & Cameron, I. (2014). Traumatic brain injury – support for injured people and their careers. Australian Family Physician, 43(11), 758–763. https://www.racgp.org.au/afp
James, S. L., Theadom, A., Ellenbogen, R. G., Bannick, M. S., Montjoy-Venning, W., Lucchesi, L. R., Abbasi, N., Abdulkader, R., Abraha, H. N., Adsuar, J. C., Afarideh, M., Agrawal, S., Ahmadi, A., Ahmed, M. B., Aichour, A. N., Aichour, I., Aichour, M. T. E., Akinyemi, R. O., Akseer, N., Alahdab, F., ... Murray, C. J. L. (2019). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56–87. https://doi.org/10.1016/S1474-4422(18)30415-0
Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., Leech, R., & Sharp, D. J. (2014). Damage to the salience network and interactions with the default mode network. The Journal of Neuroscience, 34(33), 10798–10807. https://doi.org/10.1523/JNEUROSCI.0518-14.2014
Jungfer, P. (2017). Psychiatric aspects of mild traumatic brain injury: The obsolete diagnosis of post-concussion syndrome. Precedent (Sydney, N.S.W.)(138), 37–40. https://www.austlii.edu.au/cgi-bin/viewdoc/au/journals/PrecedentAULA/2017/10.html
Kerasidis, H., & Simmons, J. (2021). Quantitative EEG analysis in clinical practice: Concussion injury. Clinical EEG and Neuroscience, 52(2), 114–118. https://doi.org/10.1177/1550059421989112
Kong, T. S., Gratton, C., Low, K. A., Tan, C. H., Chiarelli, A. M., Fletcher, M. A., Zimmerman, B., Maclin, E. L., Sutton, B. P., Gratton, G., & Fabiani, M. (2020). Age-related differences in functional brain network segregation are consistent with a cascade of cerebrovascular, structural, and cognitive effects. Network Neuroscience, 4(1), 89–114. https://doi.org/10.1162/netn_a_00110
Langer, L., Levy, C., & Bayley, M. (2020). Increasing incidence of concussion: True epidemic or better recognition? The Journal of Head Trauma Rehabilitation, 35(1), E60–E66. https://doi.org/10.1097/HTR.0000000000000503
Levine, A. J., Miller, E. N., Becker, J. T., Selnes, O. A., & Cohen, B. A. (2004). Normative data for determining significance of test–retest differences on eight common neuropsychological instruments. The Clinical Neuropsychologist, 18(3), 373–384. https://doi.org/10.1080/1385404049052420
Liotta, M. (2021). Rest or exercise following concussion? NewsGP. https://www1.racgp.org.au/newsgp/clinical/rest-or-exercise-following-concussion#:~:text=A%20graded%20return%20to%20daily,the%20likelihood%20of%20prolonged%20symptoms
Lovell, M. R., Iverson, G. L., Collins, M. W., Podell, K., Johnston, K. M., Pardini, D., Pardini, J., Norwig, J., & Maroon, J. C. (2006). Measurement of symptoms following sports-related concussion: Reliability and normative data for the post-concussion scale. Applied Neuropsychology, 13(3), 166–174. https://doi.org/10.1207/s15324826an1303_4
Luria, A. (1973). The working brain. Basic Books.
Martínez, K., Solana, A. B., Burgaleta, M., Hernández-Tamames, J. A., Alvarez-Linera, J., Román, F. J., Alfayate, E., Privado, J., Escorial, S., Quiroga, M. A., Karama, S., Bellec, P. & Colom, R. (2013). Changes in resting-state functionally connected parietofrontal networks after videogame practice. Human Brain Mapping, 34(12), 3143–3157. https://doi.org/10.1002/hbm.22129
Masel, B. E., & DeWitt, D. S. (2010). Traumatic brain injury: A disease process, not an event. Journal of Neurotrauma, 27(8), 1529–1540. https://doi.org/10.1089/neu.2010.1358
Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835. https://doi.org/10.1002/hbm.21151
Mayer, A. R., Quinn, D. K., & Master, C. L. (2017). The spectrum of mild traumatic brain injury. A review. Neurology, 89(6), 623–632. https://doi.org/10.1212/wnl.0000000000004214
McCrea, M., Prichep, L., Powell, M. R., Chabot, R., & Barr, W. B. (2010). Acute effects and recovery after sport-related concussion: A neurocognitive and quantitative brain electrical activity study. The Journal of Head Trauma Rehabilitation, 25(4), 283–292. https://doi.org/10.1097/HTR.0b013e3181e67923
McFadden, K. L., Cornier, M.-A., Melanson, E. L., Bechtell, J. L., & Tregellas, J. R. (2013). Effects of exercise on resting-state default mode and salience network activity in overweight/obese adults. NeuroReport, 24(15), 866–871. https://doi.org/10.1097/wnr.0000000000000013
McInnes, K., Friesen, C. L., MacKenzie, D. E., Westwood, D. A., & Boe, S. G. (2017). Mild traumatic brain injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS ONE, 14(6), Article e0174847. https://doi.org/10.1371/journal.pone.0174847
McKay, C., Wertheimer, J. C., Fichtenberg, N. L., & Casey, J. E. (2008). The Repeatable Battery for The Assessment of Neuropsychological Status (RBANS): Clinical utility in a traumatic brain injury sample. The Clinical Neuropsychologist, 22(2), 228–241. https://doi.org/10.1080/13854040701260370
McKee, A. C., & Daneshvar, D. H. (2015). Chapter 4 - The neuropathology of traumatic brain injury. Handbook of Clinical Neurology, 127, 45–66. https://doi.org/10.1016/b978-0-444-52892-6.00004-0
McLeod, T. C. V., & Leach, C. (2012). Psychometric properties of self-report concussion scales and checklists. Journal of Athletic Training, 47(2), 221–223. https://doi.org/10.4085/1062-6050-47.2.221
Merritt, V. C., Bradson, M. L., Meyer, J. E., & Arnett, P. A. (2017). Evaluating the test-retest reliability of symptom indices associated with the ImPACT post-concussion symptom scale (PCSS). Journal of Clinical and Experimental Neuropsychology, 40(4), 377–388. https://doi.org/10.1080/13803395.2017.1353590
Messé, A., Caplain, S., Pélégrini-Issac, M., Blancho, S., Lévy, R., Aghakhani, N., Montreuil, M., Benali, H., & Lehéricy, S. (2013). Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0065470
Mesulam, M. M. (2000). Principles of behavioral and cognitive neurology (2nd ed.). Oxford University Press.
Mez, J., Daneshvar, D. H., Kiernan, P. T., Abdolmohammadi, B., Alvarez, V. E., Huber, B. R., Alosco, M. L., Solomon, T. M., Nowinski, C. J., McHale, L., Cormier, K. A., Kubilus, C. A., Martin, B. M., Murphy, L., Baugh, C. M., Montenigro, P. H., Chaisson, C. E., Tripodis, Y., Kowall, N. W., Weuve, J., … McKee, A. C. (2017). Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA, 318(4), 360–370. https://doi.org/10.1001/jama.2017.8334
Milz, P., Faber, P. L., Lehmann, D., Kochi, K., & Pascual-Marqui, R. D. (2014). sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants. Frontiers in Human Neuroscience, 8, 303. https://doi.org/10.3389/fnhum.2014.00303
Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18
Mistar, Ltd. (n.d.). MITSAR-EEG-BT 21 EEG 4 Poly channel and amplifier [Apparatus]. https://mitsar-eeg.com/mitsar-eeg-systems-specification/
Mito, R., Parker, D. M., Abbott, D. F., Makdissi, M., Pedersen, M., & Jackson, G. D. (2022). White matter abnormalities characterize the acute stage of sports-related mild traumatic brain injury. Brain Communications, 4(4), Article fcac208. https://doi.org/10.1093/braincomms/fcac208
Mortaheb, S., Filippini, M. M., Kaux, J.-F., Annen, J., Lejeune, N., Martens, G., Calderón, M. A. F., Laureys, S., & Thibaut, A. (2021). Neurophysiological biomarkers of persistent post-concussive symptoms: A scoping review. Frontiers in Neurology, 12, 687197. https://doi.org/10.3389/fneur.2021.687197
Narayana, P. A. (2017). White matter changes in patients with mild traumatic brain injury: MRI perspective. Concussion, 2(2), Cnc35. https://doi.org/10.2217/cnc-2016-0028
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268. https://doi.org/10.3758/s13415-011-0083-5
Palacios, E., Owen, J. P., Yuh, E. L., Wang, M. B., Vassar, M. J., Ferguson, A. R., Diaz-Arrastia, R., Giacino, J. T., Okonkwo, D. O., Robertson, C. S., Stein, M. B., Temkin, N., Jain, S., McCrea, M., MacDonald, C. L., Levin, H. S., Manley, G. T., Mukherjee, P., & TRACK-TBI Investigators (2020). The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study. Science Advances, 6(32), Article eaaz6892. https://doi.org/10.1126/sciadv.aaz6892
Patricios, J. S., Schneider, K. J., Dvorak, J., Ahmed, O. H., Blauwet, C., Cantu, R. C., Davis, G. A., Echemendia, R. J., Makdissi, M., McNamee, M., Broglio, S., Emery, C. A., Feddermann-Demont, N., Fuller, G. W., Giza, C. C., Guskiewicz, K. M., Hainline, B., Iverson, G. L., Kutcher, J. S., Leddy, J. J., ... Meeuwisse, W. (2023). Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport–Amsterdam, October 2022. British Journal of Sports Medicine, 57(11), 695–711. https://doi.org/10.1136/bjsports-2023-106898
Pavlovic, D., Pekic, S., Stojanovic, M., & Popovic, V. (2019). Traumatic brain injury: Neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary, 22, 270–282. https://doi.org/10.1007/s11102-019-00957-9
Pozzato, I., Tate, R. L., Rosenkoetter, U., & Cameron, I. D. (2019). Epidemiology of hospitalised traumatic brain injury in the state of New South Wales, Australia: A population-based study. Australian and New Zealand Journal of Public Health, 43(4), 382–388. https://doi.org/10.1111/1753-6405.12878
Prichep, L. S., McCrea, M., Barr, W., Powell, M., & Chabot, R. J. (2013). Time course of clinical and electrophysiological recovery after sport-related concussion. The Journal of Head Trauma Rehabilitation, 28(4), 266–273. https://doi.org/10.1097/HTR.0b013e318247b54e
Rabinovich, M. I., Afraimovich, V. S., Bick, C., & Varona, P. (2012). Information flow dynamics in the brain. Physics of Life Reviews, 9(1), 51–73. https://doi.org/10.1016/j.plrev.2011.11.002
Ramage, A. E., Ray, K. L., Franz, H. M., Tate, D. F., Lewis, J. D., & Robin, D. A. (2022). Cingulo-opercular and frontoparietal network control of effort and fatigue in mild traumatic brain injury. Frontiers in Human Neuroscience, 15, 788091. https://doi.org/10.3389/fnhum.2021.788091
Randolph, C. (2012). Repeatable battery for the assessment of neuropsychological status: Update. Bloomington, USA: PsychCorp.
Rapp, P. E., Keyser, D. O., Albano, A., Hernandez, R., Gibson, D. B., Zambon, R. A., Hairston, W. D., Hughes, J. D., Krystal, A., & Nichols, A. S. (2015). Traumatic brain injury detection using electrophysiological methods. Frontiers In Human Neuroscience, 9, 11. https://doi.org/10.3389/fnhum.2015.00011
Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press.
Rey, A. (1964). The clinical examination in psychology. Paris: University Press of France.
Reznek, L. (2005). The Rey 15-item memory test for malingering: A meta-analysis. Brain Injury, 19(7), 539–543. https://doi.org/10.1080/02699050400005242
Rivara, F. P., & Graham, R. (2014). Sports-related concussions in youth: Report from the Institute of Medicine and National Research Council. JAMA, 311(3), 239–240. https://doi.org/10.1001/jama.2013.282985
Rowson, S., Bland, M. L., Campolettano, E. T., Press, J. N., Rowson, B., Smith, J. A., Sproule, D. W., Tyson, A. M., & Duma, S. M. (2016). Biomechanical perspectives on concussion in sport. Sports Medicine and Arthroscopy Review, 24(3), 100–107. https://doi.org/10.1097/jsa.0000000000000121
Schatz, P., & Ferris, C. S. (2013). One-month test-retest reliability of the ImPACT test battery. Archives of Clinical Neuropsychology, 28(5), 499–504. https://doi.org/10.1093/arclin/act034
Schmitt, A., Upadhyay, N., Martin, J. A., Rojas, S., Strüder, H. K., & Boecker, H. (2019). Modulation of distinct intrinsic resting state brain networks by acute exercise bouts of differing intensity. Brain Plasticity, 5(1), 39–55. https://doi.org/10.3233/BPL-190081
Sharp, D. J., Beckmann, C., Greenwood, R., Kinnunen, K., Bonnelle, V., De Boissezon, X., Powell, J. H., Counsell, S. J., Patel, M. C., & Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(8), 2233–2247. https://doi.org/10.1093/brain/awr175
Sharp, D. J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10(3), 156–166. https://doi.org/10.1038/nrneurol.2014.15
Shumskaya, E., Andriessen, T., Norris, D. G., & Vos, P. (2012). Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology, 79(2), 175–182. https://doi.org/10.1212/WNL.0b013e31825f04fb
Silverberg, N., Wertheimer, J. C., & Fichtenberg, N. L. (2007). An effort index for the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The Clinical Neuropsychologist, 21(5), 841–854. https://doi.org/10.1080/13854040600850958
Skandsen, T., Nilsen, T. L., Einarsen, C., Normann, I., McDonagh, D., Haberg, A. K., & Vik, A. (2019). Incidence of mild traumatic brain injury: A prospective hospital, emergency room and general practitioner-based study. Frontiers in Neurology, 10, 638. https://doi.org/10.3389/fneur.2019.00638
Sours, C., Zhuo, J., Roys, S., Shanmuganathan, K., & Gullapalli, R. P. (2015). Disruptions in resting state functional connectivity and cerebral blood flow in mild traumatic brain injury patients. PLoS ONE, 10(8), Article e0134019. https://doi.org/10.1371/journal.pone.0134019
Sponheim, S. R., McGuire, K. A., Kang, S. S., Davenport, N. D., Aviyente, S., Bernat, E. M., & Lim, K. O. (2011). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. NeuroImage, 54(Suppl. 1), S21–S29. https://doi.org/10.1016/j.neuroimage.2010.09.007
Stevens, M., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 293–318. https://doi.org/10.1007/s11682-012-9157-4
Tang, L., Ge, Y., Sodickson, D. K., Miles, L., Zhou, Y., Reaume, J., & Grossman, R. I. (2011). Thalamic resting-state functional networks: Disruption in patients with mild traumatic brain injury. Radiology, 260(3), 831. https://doi.org/10.1148/radiol.11110014
Thatcher, R. W., Biver, C., Salazar, A. M., & McAlaster, R. (1998a). Biophysical linkage between MRI and EEG amplitude in traumatic brain injury. NeuroImage, 7(4, Part 2), S659. https://doi.org/10.1016/S1053-8119(18)31492-7
Thatcher, R. W., Biver, C., Salazar, A. M., & McAlaster, R. (1998b). Biophysical linkage between MRI and EEG coherence in traumatic brain injury. NeuroImage, 7(4, Part 2), S648. https://doi.org/10.1016/S1053-8119(18)31481-2
Thatcher, R. W., North, D. M., Curtin, R. T., Walker, R. A., Biver, C. J., Gomez, J. F., & Salazar, A. M. (2001). An EEG severity index of traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 77–87. https://doi.org/10.1176/jnp.13.1.77
Thatcher, R. W., Walker, R. A., Biver, C. J., North, D. N., & Curtin, R. (2003). Quantitative EEG normative databases: Validation and clinical correlation. Journal of Neurotherapy, 7(3–4), 87–121. https://doi.org/10.1300/J184v07n03_05
Theadom, A., Parag, V., Dowell, T., McPherson, K., Starkey, N., Barker-Collo, S., Jones, K., Ameratunga, S., & Feigin, V. L. (2016). Persistent problems 1 year after mild traumatic brain injury: A longitudinal population study in New Zealand. British Journal of General Practice, 66(642), e16–e23. https://doi.org/10.3399/bjgp16X683161
Tombaugh, T. N. (2004). Trail making test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203–214. https://doi.org/10.1016/S0887-6177(03)00039-8
van Eijck, M. M., Schoonman, G. G., van der Naalt, J., de Vries, J., & Roks, G. (2018). Diffuse axonal injury after traumatic brain injury is a prognostic factor for functional outcome: A systematic review and meta-analysis. Brain Injury, 32(4), 395–402. https://doi.org/10.1080/02699052.2018.1429018
Vitacco, D., Brandeis, D., Pascual-Marqui, R., & Martin, E. (2002). Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Human Brain Mapping, 17(1), 4–12. https://doi.org/10.1002/hbm.10038
Voormolen, D. C., Cnossen, M. C., Polinder, S., Gravesteijn, B. Y., Von Steinbuechel, N., Real, R. G. L., & Haagsma, J. A. (2019). Prevalence of post-concussion-like symptoms in the general population in Italy, The Netherlands and the United Kingdom. Brain Injury, 33(8), 1078–1086. https://doi.org/10.1080/02699052.2019.1607557
Young, G. (2020). Thirty complexities and controversies in mild traumatic brain injury and persistent post-concussion syndrome: A roadmap for research and practice. Psychological Injury and Law, 13(4), 427–451. https://doi.org/10.1007/s12207-020-09395-6
Zhang, J., Yoganandan, N., Pintar, F. A., & Gennarelli, T. A. (2006). Role of translational and rotational accelerations on brain strain in lateral head impact. Biomedical Sciences Instrumentation, 42, 501–506. Retrieved from https://iaexpress.ca/journals/biomedical-sciences-instrumentation-publishes/
Zhou, Y., Lui, Y. W., Zuo, X.-N., Milham, M. P., Reaume, J., Grossman, R. I., & Ge, Y. (2014). Characterization of thalamo‐cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury. Journal of Magnetic Resonance Imaging, 39(6). https://doi.org/10.1002/jmri.24705
Zhou, Y., Milham, M. P., Lui, Y. W., Miles, L., Reaume, J., Sodickson, D. K., Grossman, R. I., & Ge, Y. (2012). Default-mode network disruption in mild traumatic brain injury. Radiology, 265(3), 882–892. https://doi.org/10.1148/radiol.12120748
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Francesca Buhagiar, Melinda Fitzgerald, Sarah Hellewell, Jason Bell, Samantha Moore, Aleksandra Gozt, Jacinta Thorne, Elizabeth Thomas, Antonio Celenza, Dan Xu, Suzanne Robinson, Gill Cowen, Michael Bynevelt, Daniel Fatovich, Carmela Pestell
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).