Brain Connectivity, Acute Post-Concussion Symptoms, and Cognition in Adults With Concussion: A Quantitative Electroencephalography Study

Authors

  • Francesca Buhagiar The Universityof Western Australia, ISNR member
  • Melinda Fitzgerald bCurtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia, cPerron Institute for Neurological and Translational Science, Nedlands, WA, Australia,
  • Sarah Hellewell Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia,
  • Jason Bell
  • Samantha Moore School of Psychological Science, University of Western Australia, Perth, WA, Australia
  • Aleksandra Gozt Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia,
  • Jacinta Thorne bCurtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia, cPerron Institute for Neurological and Translational Science, Nedlands, WA, Australia, dSchool of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia,
  • Elizabeth Thomas eSchool of Population Health, Curtin University, Perth, Western Australia, fMedical School, The University of Western Australia, Perth, Western Australia,
  • Antonio Celenza Medical School, The University of Western Australia, Perth, Western Australia,
  • Dan Xu eSchool of Population Health, Curtin University, Perth, Western Australia, gCurtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia, iThe First Affiliated Hospital, Sun Yat-Sen University Guangzhou, China,
  • Suzanne Robinson jDeakin Health Economics, Institute for Health Transformation, Deakin University, kenAble Institute, Curtin University, Bentley, WA, Australia
  • Gill Cowen gCurtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia,
  • Michael Bynevelt Neurological Intervention and Imaging Service of Western Australia, Australia,
  • Daniel Fatovich Emergency Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
  • Carmela Pestell School of Psychological Science, University of Western Australia, Perth, WA, Australia, bCurtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia,

DOI:

https://doi.org/10.15540/nr.10.2.94

Keywords:

Default Mode Network, Salience Network, Frontoparietal Network, Post-Concussion Symptoms, Quantitative Electroencephalography

Abstract

Mild traumatic brain injury (mTBI) accounts for 80–90% of all TBI. Post-mTBI symptoms are measured using the Post-Concussion Symptom Scale (PCSS); however, symptom heterogeneity limits specificity. Better understanding of the neuropathophysiology underlying post-concussion symptoms could enhance diagnostic accuracy. We explored the association between network connectivity, PCSS and neuropsychological functioning within 7 days post-mTBI. We hypothesized that network dysregulation would (a) correlate positively with PCSS scores and (b) correlate negatively with cognitive performance; and that (c) cognitive performance would correlate negatively with PCSS scores. Network activity was measured in 19 participants aged 21 to 65, following a medically diagnosed mTBI. Quantitative electroencephalography (qEEG) measured default mode, salience, and frontoparietal networks, while cognition was measured via neuropsychological assessment. Hypothesis (a) was not supported. Of the cognitive domains, support was only found for an association between network dysfunction and immediate memory. There was no association between neuropsychological performance and PCSS scores. PCSS scores were not a sensitive indicator of neuropsychological status and did not reflect the status of underlying brain network regulation. This study provides preliminary evidence for immediate memory as an indicator of altered network connectivity in acute mTBI. Evaluating neurophysiological and cognitive impacts of mTBI may improve understanding of individual recovery needs.

References

Allen, M. (2022). Exercise after a concussion: When is it OK and what if it makes you feel worse? Cognitive FX. https://www.cognitivefxusa.com/blog/exercise-after-a-concussion

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., & Buckner, R. L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935. https://doi.org/10.1016/j.neuron.2007.10.038

Applied Neuroscience Inc. (2023). NeuroGuide with NeuroNavigator add-on tools. [Software]. https://appliedneuroscience.com/product/neuronavigator/

Bai, L., Yin, B., Lei, S., Li, T., Wang, S., Pan, Y., Gan, S., Jia, X., Li, X., Xiong, F., Yan, Z., & Bai, G. (2022). Reorganized hubs of brain functional networks following acute mild traumatic brain injury. Journal of Neurotrauma, 40(1–2), 63–73. https://doi.org/10.1089/neu.2021.0450

Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M. (2012). Measuring brain electrical activity to track recovery from sport-related concussion. Brain Injury, 26(1), 58–66. https://doi.org/10.3109/02699052.2011.608216

Bedard, M., Steffener, J., & Taler, V. (2020). Long-term cognitive impairment following single mild traumatic brain injury with loss of consciousness: Findings from the Canadian Longitudinal Study on Aging. Journal of Clinical and Experimental Neuropsychology, 42(4), 344–351. https://doi.org/10.1080/13803395.2020.1714552

Bonnelle, V., Ham, T., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695. https://doi.org/10.1073/pnas.1113455109

Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., Greenwood, R. J., & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31(38), 13442–13451. https://doi.org/10.1523/JNEUROSCI.1163-11.2011

Brodmann, K. (1909). Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. Leipzig, Germany: Johann Ambrosius Barth.

Cannon, R. L., Kerson, C., & Hampshire, A. (2011). sLORETA and fMRI detection of medial prefrontal default network anomalies in adult ADHD. Journal of Neurotherapy, 15(4), 358–373. https://doi.org/10.1080/10874208.2011.623093

Carroll, E. L., Outtrim, J. G., Forsyth, F., Manktelow, A. E., Hutchinson, P. J. A., Tenovuo, O., Posti, J. P., Wilson, L., Sahakian, B. J., Menon, D. K., & Newcombe, V. F. J. (2020). Mild traumatic brain injury recovery: A growth curve modelling analysis over 2 years. Journal of Neurology, 267(11), 3223–3234. https://doi.org/10.1007/s00415-020-09979-x

Carroll, L. J., Cassidy, J. D., Cancelliere, C., Côté, P., Hincapié, C. A., Kristman, V. L., Holm, L. W., Borg, J., Nygren-de Boussard, C., & Hartvigsen, J. (2014). Systematic review of the prognosis after mild traumatic brain injury in adults: Cognitive, psychiatric, and mortality outcomes: Results of the international collaboration on mild traumatic brain injury prognosis. Archives of Physical Medicine and Rehabilitation, 95(3 Suppl.), S152–S173. https://doi.org/10.1016/j.apmr.2013.08.300

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences of the United States of America, 111(46), E4997–E5006. https://doi.org/10.1073/pnas.1415122111

Chenot, Q., Lepron, E., De Boissezon, X., & Scannella, S. (2021). Functional connectivity within the fronto-parietal network predicts complex task performance: A fNIRS study. Frontiers in Neuroergonomics, 2, 718176. https://doi.org/10.3389/fnrgo.2021.718176

Colantonio, A., Ratcliff, G., Chase, S., & Escobar, M. (2000). Is cognitive performance related to level of community integration many years after traumatic brain injury? Brain and Cognition, 44(1), 19–20. https://doi.org/10.1006/brcg.1999.1207

Custer, A., Sufrinko, A., Elbin, R. J., Covassin, T., Collins, M., & Kontos, A. (2016). High baseline postconcussion symptom scores and concussion outcomes in athletes. Journal of Athletic Training, 51(2), 136–141. https://doi.org/10.4085/1062-6050-51.2.12

D'Souza, M. M., Kumar, M., Choudhary, A., Kaur, P., Kumar, P., Rana, P., Trivedi, R., Sekhri, T., & Singh, A. K. (2020). Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study. The Neuroradiology Journal, 33(2), 186–197. https://doi.org/10.1177/1971400920901706

Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J. S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Rombouts, S. A. R. B. (2008). Reduced resting-state brain activity in the "default network" in normal aging. Cerebral Cortex, 18(8), 1856–1864. https://doi.org/10.1093/cercor/bhm207

de Freitas Cardoso, M. G., Faleiro, R. M., de Paula, J. J., Kummer, A., Caramelli, P., Teixeira, A. L., de Souza, L. C., & Miranda, A. S. (2019). Cognitive impairment following acute mild traumatic brain injury. Frontiers in Neurology, 10, 198. https://doi.org/10.3389/fneur.2019.00198

Dorsman, K. A., Weiner-Light, S., Staffaroni, A. M., Brown, J. A., Wolf, A., Cobigo, Y., Walters, S., Kramer, J. H., & Casaletto, K. B. (2020). Get moving! Increases in physical activity are associated with increasing functional connectivity trajectories in typically aging adults. Frontiers in Aging Neuroscience, 12, 104. https://doi.org/10.3389/fnagi.2020.00104

Electro-Cap International, Inc. (n.d.). Electro-Cap 19-channel system with Electro-Gel electroconductive gel [Apparatus].

Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105–118. https://doi.org/10.1038/nrn2979

Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neuroscience & Biobehavioral Reviews, 37(3), 384–400. https://doi.org/10.1016/j.neubiorev.2013.01.017

Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). London, UK: SAGE Publications Ltd.

Gardner, R. C., & Yaffe, K. (2015). Epidemiology of mild traumatic brain injury and neurodegenerative disease. Molecular and Cellular Neurosciences, 66(Part B), 75–80. https://doi.org/10.1016/j.mcn.2015.03.001

Gennarelli, T. (1971). Comparison of translational and rotational motions in experimental cerebral concussion. Paper presented at the 15th Stapp Car Crash Conference.

Gozt, A. K., Hellewell, S. C., Thorne, J., Thomas, E., Buhagiar, F., Markovic, S., Van Houselt, A., Ring, A., Arendts, G., Smedley, B., Van Schalkwyk, S., Brooks, P., Iliff, J., Celenza, A., Mukherjee, A., Xu, D., Robinson, S., Honeybul, S., Cowen, G., Licari, M., … Fitzgerald, M. (2021). Predicting outcome following mild traumatic brain injury: Protocol for the longitudinal, prospective, observational Concussion Recovery (CREST) cohort study. BMJ Open, 11(5), Article e046460. https://doi.org/10.1136/bmjopen-2020-046460

Gumm, K., Taylor, T., Orbons, K., Carey, L., & PTA Working Party (2011). Post traumatic amnesia screening and management guideline. The Royal Melbourne Hospital. https://www.connectivity.org.au/wp-content/uploads/2022/08/TRM01.01-Post-Traumatic-Amnesia-Screening-and-Management-V5.1_06.20.docx.converted.pdf

Ham, T. E., Bonnelle, V., Hellyer, P., Jilka, S., Robertson, I. H., Leech, R., & Sharp, D. J. (2014). The neural basis of impaired self-awareness after traumatic brain injury. Brain, 137(2), 586–597. https://doi.org/10.1093/brain/awt350

Han, K., Chapman, S. B., & Krawczyk, D. C. (2016). Disrupted intrinsic connectivity among default, dorsal attention, and frontoparietal control networks in individuals with chronic traumatic brain injury. Journal of the International Neuropsychological Society, 22(Suppl. 2), 263–279. https://doi.org/10.1017/s1355617715001393

Haneef, Z., Levin, H. S., Frost, J. D. Jr., & Mizrahi, E. M. (2013). Electroencephalography and quantitative electroencephalography in mild traumatic brain injury. Journal of Neurotrauma, 30(8), 653–656. https://doi.org/10.1089/neu.2012.2585

Harmon, K. G., Clugston, J. R., Dec, K., Hainline, B., Herring, S., Kane, S. F., Kontos, A. P., Leddy, J. J., McCrea, M., Poddar, S. K., Putukian, M., Wilson, J. C., & Roberts, W. O. (2019). American Medical Society for Sports Medicine position statement on concussion in sport. British Journal of Sports Medicine, 53(4), 213–225. https://doi.org/10.1136/bjsports-2018-100338

Hayes, J. P., Bigler, E. D., & Verfaellie, M. (2016). Traumatic brain injury as a disorder of brain connectivity. Journal of the International Neuropsychological Society, 22(2), 120–137. https://doi.org/10.1017/S1355617715000740

Ims, P. D. (2019). Re-training the injured brain: A case series in sLORETA neurofeedback as an acute concussion intervention in youth. Towson University

Iverson, G. L. (2019). Network analysis and precision rehabilitation for the post-concussion syndrome. Frontiers in Neurology, 10, 489. https://doi.org/10.3389/fneur.2019.00489

Jagnoor, J., & Cameron, I. (2014). Traumatic brain injury – support for injured people and their careers. Australian Family Physician, 43(11), 758–763. https://www.racgp.org.au/afp

James, S. L., Theadom, A., Ellenbogen, R. G., Bannick, M. S., Montjoy-Venning, W., Lucchesi, L. R., Abbasi, N., Abdulkader, R., Abraha, H. N., Adsuar, J. C., Afarideh, M., Agrawal, S., Ahmadi, A., Ahmed, M. B., Aichour, A. N., Aichour, I., Aichour, M. T. E., Akinyemi, R. O., Akseer, N., Alahdab, F., ... Murray, C. J. L. (2019). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56–87. https://doi.org/10.1016/S1474-4422(18)30415-0

Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., Leech, R., & Sharp, D. J. (2014). Damage to the salience network and interactions with the default mode network. The Journal of Neuroscience, 34(33), 10798–10807. https://doi.org/10.1523/JNEUROSCI.0518-14.2014

Jungfer, P. (2017). Psychiatric aspects of mild traumatic brain injury: The obsolete diagnosis of post-concussion syndrome. Precedent (Sydney, N.S.W.)(138), 37–40. https://www.austlii.edu.au/cgi-bin/viewdoc/au/journals/PrecedentAULA/2017/10.html

Kerasidis, H., & Simmons, J. (2021). Quantitative EEG analysis in clinical practice: Concussion injury. Clinical EEG and Neuroscience, 52(2), 114–118. https://doi.org/10.1177/1550059421989112

Kong, T. S., Gratton, C., Low, K. A., Tan, C. H., Chiarelli, A. M., Fletcher, M. A., Zimmerman, B., Maclin, E. L., Sutton, B. P., Gratton, G., & Fabiani, M. (2020). Age-related differences in functional brain network segregation are consistent with a cascade of cerebrovascular, structural, and cognitive effects. Network Neuroscience, 4(1), 89–114. https://doi.org/10.1162/netn_a_00110

Langer, L., Levy, C., & Bayley, M. (2020). Increasing incidence of concussion: True epidemic or better recognition? The Journal of Head Trauma Rehabilitation, 35(1), E60–E66. https://doi.org/10.1097/HTR.0000000000000503

Levine, A. J., Miller, E. N., Becker, J. T., Selnes, O. A., & Cohen, B. A. (2004). Normative data for determining significance of test–retest differences on eight common neuropsychological instruments. The Clinical Neuropsychologist, 18(3), 373–384. https://doi.org/10.1080/1385404049052420

Liotta, M. (2021). Rest or exercise following concussion? NewsGP. https://www1.racgp.org.au/newsgp/clinical/rest-or-exercise-following-concussion#:~:text=A%20graded%20return%20to%20daily,the%20likelihood%20of%20prolonged%20symptoms

Lovell, M. R., Iverson, G. L., Collins, M. W., Podell, K., Johnston, K. M., Pardini, D., Pardini, J., Norwig, J., & Maroon, J. C. (2006). Measurement of symptoms following sports-related concussion: Reliability and normative data for the post-concussion scale. Applied Neuropsychology, 13(3), 166–174. https://doi.org/10.1207/s15324826an1303_4

Luria, A. (1973). The working brain. Basic Books.

Martínez, K., Solana, A. B., Burgaleta, M., Hernández-Tamames, J. A., Alvarez-Linera, J., Román, F. J., Alfayate, E., Privado, J., Escorial, S., Quiroga, M. A., Karama, S., Bellec, P. & Colom, R. (2013). Changes in resting-state functionally connected parietofrontal networks after videogame practice. Human Brain Mapping, 34(12), 3143–3157. https://doi.org/10.1002/hbm.22129

Masel, B. E., & DeWitt, D. S. (2010). Traumatic brain injury: A disease process, not an event. Journal of Neurotrauma, 27(8), 1529–1540. https://doi.org/10.1089/neu.2010.1358

Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835. https://doi.org/10.1002/hbm.21151

Mayer, A. R., Quinn, D. K., & Master, C. L. (2017). The spectrum of mild traumatic brain injury. A review. Neurology, 89(6), 623–632. https://doi.org/10.1212/wnl.0000000000004214

McCrea, M., Prichep, L., Powell, M. R., Chabot, R., & Barr, W. B. (2010). Acute effects and recovery after sport-related concussion: A neurocognitive and quantitative brain electrical activity study. The Journal of Head Trauma Rehabilitation, 25(4), 283–292. https://doi.org/10.1097/HTR.0b013e3181e67923

McFadden, K. L., Cornier, M.-A., Melanson, E. L., Bechtell, J. L., & Tregellas, J. R. (2013). Effects of exercise on resting-state default mode and salience network activity in overweight/obese adults. NeuroReport, 24(15), 866–871. https://doi.org/10.1097/wnr.0000000000000013

McInnes, K., Friesen, C. L., MacKenzie, D. E., Westwood, D. A., & Boe, S. G. (2017). Mild traumatic brain injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS ONE, 14(6), Article e0174847. https://doi.org/10.1371/journal.pone.0174847

McKay, C., Wertheimer, J. C., Fichtenberg, N. L., & Casey, J. E. (2008). The Repeatable Battery for The Assessment of Neuropsychological Status (RBANS): Clinical utility in a traumatic brain injury sample. The Clinical Neuropsychologist, 22(2), 228–241. https://doi.org/10.1080/13854040701260370

McKee, A. C., & Daneshvar, D. H. (2015). Chapter 4 - The neuropathology of traumatic brain injury. Handbook of Clinical Neurology, 127, 45–66. https://doi.org/10.1016/b978-0-444-52892-6.00004-0

McLeod, T. C. V., & Leach, C. (2012). Psychometric properties of self-report concussion scales and checklists. Journal of Athletic Training, 47(2), 221–223. https://doi.org/10.4085/1062-6050-47.2.221

Merritt, V. C., Bradson, M. L., Meyer, J. E., & Arnett, P. A. (2017). Evaluating the test-retest reliability of symptom indices associated with the ImPACT post-concussion symptom scale (PCSS). Journal of Clinical and Experimental Neuropsychology, 40(4), 377–388. https://doi.org/10.1080/13803395.2017.1353590

Messé, A., Caplain, S., Pélégrini-Issac, M., Blancho, S., Lévy, R., Aghakhani, N., Montreuil, M., Benali, H., & Lehéricy, S. (2013). Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0065470

Mesulam, M. M. (2000). Principles of behavioral and cognitive neurology (2nd ed.). Oxford University Press.

Mez, J., Daneshvar, D. H., Kiernan, P. T., Abdolmohammadi, B., Alvarez, V. E., Huber, B. R., Alosco, M. L., Solomon, T. M., Nowinski, C. J., McHale, L., Cormier, K. A., Kubilus, C. A., Martin, B. M., Murphy, L., Baugh, C. M., Montenigro, P. H., Chaisson, C. E., Tripodis, Y., Kowall, N. W., Weuve, J., … McKee, A. C. (2017). Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA, 318(4), 360–370. https://doi.org/10.1001/jama.2017.8334

Milz, P., Faber, P. L., Lehmann, D., Kochi, K., & Pascual-Marqui, R. D. (2014). sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants. Frontiers in Human Neuroscience, 8, 303. https://doi.org/10.3389/fnhum.2014.00303

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18

Mistar, Ltd. (n.d.). MITSAR-EEG-BT 21 EEG 4 Poly channel and amplifier [Apparatus]. https://mitsar-eeg.com/mitsar-eeg-systems-specification/

Mito, R., Parker, D. M., Abbott, D. F., Makdissi, M., Pedersen, M., & Jackson, G. D. (2022). White matter abnormalities characterize the acute stage of sports-related mild traumatic brain injury. Brain Communications, 4(4), Article fcac208. https://doi.org/10.1093/braincomms/fcac208

Mortaheb, S., Filippini, M. M., Kaux, J.-F., Annen, J., Lejeune, N., Martens, G., Calderón, M. A. F., Laureys, S., & Thibaut, A. (2021). Neurophysiological biomarkers of persistent post-concussive symptoms: A scoping review. Frontiers in Neurology, 12, 687197. https://doi.org/10.3389/fneur.2021.687197

Narayana, P. A. (2017). White matter changes in patients with mild traumatic brain injury: MRI perspective. Concussion, 2(2), Cnc35. https://doi.org/10.2217/cnc-2016-0028

Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268. https://doi.org/10.3758/s13415-011-0083-5

Palacios, E., Owen, J. P., Yuh, E. L., Wang, M. B., Vassar, M. J., Ferguson, A. R., Diaz-Arrastia, R., Giacino, J. T., Okonkwo, D. O., Robertson, C. S., Stein, M. B., Temkin, N., Jain, S., McCrea, M., MacDonald, C. L., Levin, H. S., Manley, G. T., Mukherjee, P., & TRACK-TBI Investigators (2020). The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study. Science Advances, 6(32), Article eaaz6892. https://doi.org/10.1126/sciadv.aaz6892

Patricios, J. S., Schneider, K. J., Dvorak, J., Ahmed, O. H., Blauwet, C., Cantu, R. C., Davis, G. A., Echemendia, R. J., Makdissi, M., McNamee, M., Broglio, S., Emery, C. A., Feddermann-Demont, N., Fuller, G. W., Giza, C. C., Guskiewicz, K. M., Hainline, B., Iverson, G. L., Kutcher, J. S., Leddy, J. J., ... Meeuwisse, W. (2023). Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport–Amsterdam, October 2022. British Journal of Sports Medicine, 57(11), 695–711. https://doi.org/10.1136/bjsports-2023-106898

Pavlovic, D., Pekic, S., Stojanovic, M., & Popovic, V. (2019). Traumatic brain injury: Neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary, 22, 270–282. https://doi.org/10.1007/s11102-019-00957-9

Pozzato, I., Tate, R. L., Rosenkoetter, U., & Cameron, I. D. (2019). Epidemiology of hospitalised traumatic brain injury in the state of New South Wales, Australia: A population-based study. Australian and New Zealand Journal of Public Health, 43(4), 382–388. https://doi.org/10.1111/1753-6405.12878

Prichep, L. S., McCrea, M., Barr, W., Powell, M., & Chabot, R. J. (2013). Time course of clinical and electrophysiological recovery after sport-related concussion. The Journal of Head Trauma Rehabilitation, 28(4), 266–273. https://doi.org/10.1097/HTR.0b013e318247b54e

Rabinovich, M. I., Afraimovich, V. S., Bick, C., & Varona, P. (2012). Information flow dynamics in the brain. Physics of Life Reviews, 9(1), 51–73. https://doi.org/10.1016/j.plrev.2011.11.002

Ramage, A. E., Ray, K. L., Franz, H. M., Tate, D. F., Lewis, J. D., & Robin, D. A. (2022). Cingulo-opercular and frontoparietal network control of effort and fatigue in mild traumatic brain injury. Frontiers in Human Neuroscience, 15, 788091. https://doi.org/10.3389/fnhum.2021.788091

Randolph, C. (2012). Repeatable battery for the assessment of neuropsychological status: Update. Bloomington, USA: PsychCorp.

Rapp, P. E., Keyser, D. O., Albano, A., Hernandez, R., Gibson, D. B., Zambon, R. A., Hairston, W. D., Hughes, J. D., Krystal, A., & Nichols, A. S. (2015). Traumatic brain injury detection using electrophysiological methods. Frontiers In Human Neuroscience, 9, 11. https://doi.org/10.3389/fnhum.2015.00011

Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press.

Rey, A. (1964). The clinical examination in psychology. Paris: University Press of France.

Reznek, L. (2005). The Rey 15-item memory test for malingering: A meta-analysis. Brain Injury, 19(7), 539–543. https://doi.org/10.1080/02699050400005242

Rivara, F. P., & Graham, R. (2014). Sports-related concussions in youth: Report from the Institute of Medicine and National Research Council. JAMA, 311(3), 239–240. https://doi.org/10.1001/jama.2013.282985

Rowson, S., Bland, M. L., Campolettano, E. T., Press, J. N., Rowson, B., Smith, J. A., Sproule, D. W., Tyson, A. M., & Duma, S. M. (2016). Biomechanical perspectives on concussion in sport. Sports Medicine and Arthroscopy Review, 24(3), 100–107. https://doi.org/10.1097/jsa.0000000000000121

Schatz, P., & Ferris, C. S. (2013). One-month test-retest reliability of the ImPACT test battery. Archives of Clinical Neuropsychology, 28(5), 499–504. https://doi.org/10.1093/arclin/act034

Schmitt, A., Upadhyay, N., Martin, J. A., Rojas, S., Strüder, H. K., & Boecker, H. (2019). Modulation of distinct intrinsic resting state brain networks by acute exercise bouts of differing intensity. Brain Plasticity, 5(1), 39–55. https://doi.org/10.3233/BPL-190081

Sharp, D. J., Beckmann, C., Greenwood, R., Kinnunen, K., Bonnelle, V., De Boissezon, X., Powell, J. H., Counsell, S. J., Patel, M. C., & Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(8), 2233–2247. https://doi.org/10.1093/brain/awr175

Sharp, D. J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10(3), 156–166. https://doi.org/10.1038/nrneurol.2014.15

Shumskaya, E., Andriessen, T., Norris, D. G., & Vos, P. (2012). Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology, 79(2), 175–182. https://doi.org/10.1212/WNL.0b013e31825f04fb

Silverberg, N., Wertheimer, J. C., & Fichtenberg, N. L. (2007). An effort index for the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The Clinical Neuropsychologist, 21(5), 841–854. https://doi.org/10.1080/13854040600850958

Skandsen, T., Nilsen, T. L., Einarsen, C., Normann, I., McDonagh, D., Haberg, A. K., & Vik, A. (2019). Incidence of mild traumatic brain injury: A prospective hospital, emergency room and general practitioner-based study. Frontiers in Neurology, 10, 638. https://doi.org/10.3389/fneur.2019.00638

Sours, C., Zhuo, J., Roys, S., Shanmuganathan, K., & Gullapalli, R. P. (2015). Disruptions in resting state functional connectivity and cerebral blood flow in mild traumatic brain injury patients. PLoS ONE, 10(8), Article e0134019. https://doi.org/10.1371/journal.pone.0134019

Sponheim, S. R., McGuire, K. A., Kang, S. S., Davenport, N. D., Aviyente, S., Bernat, E. M., & Lim, K. O. (2011). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. NeuroImage, 54(Suppl. 1), S21–S29. https://doi.org/10.1016/j.neuroimage.2010.09.007

Stevens, M., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 293–318. https://doi.org/10.1007/s11682-012-9157-4

Tang, L., Ge, Y., Sodickson, D. K., Miles, L., Zhou, Y., Reaume, J., & Grossman, R. I. (2011). Thalamic resting-state functional networks: Disruption in patients with mild traumatic brain injury. Radiology, 260(3), 831. https://doi.org/10.1148/radiol.11110014

Thatcher, R. W., Biver, C., Salazar, A. M., & McAlaster, R. (1998a). Biophysical linkage between MRI and EEG amplitude in traumatic brain injury. NeuroImage, 7(4, Part 2), S659. https://doi.org/10.1016/S1053-8119(18)31492-7

Thatcher, R. W., Biver, C., Salazar, A. M., & McAlaster, R. (1998b). Biophysical linkage between MRI and EEG coherence in traumatic brain injury. NeuroImage, 7(4, Part 2), S648. https://doi.org/10.1016/S1053-8119(18)31481-2

Thatcher, R. W., North, D. M., Curtin, R. T., Walker, R. A., Biver, C. J., Gomez, J. F., & Salazar, A. M. (2001). An EEG severity index of traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 77–87. https://doi.org/10.1176/jnp.13.1.77

Thatcher, R. W., Walker, R. A., Biver, C. J., North, D. N., & Curtin, R. (2003). Quantitative EEG normative databases: Validation and clinical correlation. Journal of Neurotherapy, 7(3–4), 87–121. https://doi.org/10.1300/J184v07n03_05

Theadom, A., Parag, V., Dowell, T., McPherson, K., Starkey, N., Barker-Collo, S., Jones, K., Ameratunga, S., & Feigin, V. L. (2016). Persistent problems 1 year after mild traumatic brain injury: A longitudinal population study in New Zealand. British Journal of General Practice, 66(642), e16–e23. https://doi.org/10.3399/bjgp16X683161

Tombaugh, T. N. (2004). Trail making test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203–214. https://doi.org/10.1016/S0887-6177(03)00039-8

van Eijck, M. M., Schoonman, G. G., van der Naalt, J., de Vries, J., & Roks, G. (2018). Diffuse axonal injury after traumatic brain injury is a prognostic factor for functional outcome: A systematic review and meta-analysis. Brain Injury, 32(4), 395–402. https://doi.org/10.1080/02699052.2018.1429018

Vitacco, D., Brandeis, D., Pascual-Marqui, R., & Martin, E. (2002). Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Human Brain Mapping, 17(1), 4–12. https://doi.org/10.1002/hbm.10038

Voormolen, D. C., Cnossen, M. C., Polinder, S., Gravesteijn, B. Y., Von Steinbuechel, N., Real, R. G. L., & Haagsma, J. A. (2019). Prevalence of post-concussion-like symptoms in the general population in Italy, The Netherlands and the United Kingdom. Brain Injury, 33(8), 1078–1086. https://doi.org/10.1080/02699052.2019.1607557

Young, G. (2020). Thirty complexities and controversies in mild traumatic brain injury and persistent post-concussion syndrome: A roadmap for research and practice. Psychological Injury and Law, 13(4), 427–451. https://doi.org/10.1007/s12207-020-09395-6

Zhang, J., Yoganandan, N., Pintar, F. A., & Gennarelli, T. A. (2006). Role of translational and rotational accelerations on brain strain in lateral head impact. Biomedical Sciences Instrumentation, 42, 501–506. Retrieved from https://iaexpress.ca/journals/biomedical-sciences-instrumentation-publishes/

Zhou, Y., Lui, Y. W., Zuo, X.-N., Milham, M. P., Reaume, J., Grossman, R. I., & Ge, Y. (2014). Characterization of thalamo‐cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury. Journal of Magnetic Resonance Imaging, 39(6). https://doi.org/10.1002/jmri.24705

Zhou, Y., Milham, M. P., Lui, Y. W., Miles, L., Reaume, J., Sodickson, D. K., Grossman, R. I., & Ge, Y. (2012). Default-mode network disruption in mild traumatic brain injury. Radiology, 265(3), 882–892. https://doi.org/10.1148/radiol.12120748

Downloads

Published

2023-06-29

Issue

Section

Research Papers