Association Between Heart Rate Variability and Executive Function Performance: A Cross-Sectional Study in Adult Population

Authors

DOI:

https://doi.org/10.15540/nr.10.2.78

Keywords:

Executive function, Neuropsychological tests, Heart rate variability, Autonomic function, Aging, Middle aged

Abstract

The present study aimed at investigating the association between short-term heart rate variability and executive function performance in two groups of the adult population, that is, young adults and middle-aged adults. The influence of physical activity on heart rate variability and executive performance was also analyzed. A cross-sectional study was conducted on 143 adults; 65 middle-aged adults and 78 young adults. Each participant’s heart rate variability was recorded during the ideal state, during the executive function task and recovery state. The executive function tests included the Delayed Matching of Sample (DMS), Spatial Working Memory (SWM) and Multitasking Test (MTT) on the Cambridge Neuropsychological Test Automated Battery (CANTAB). Physical activity levels were reported through IPAQ. Results revealed resting HRV indicator, RMSSD was able to predict correct scores in DMS, error rates in SWM, and reaction latencies in MTT in the adult population, and adults with high HRV performed better in the tests. Middle-aged adults demonstrated high sympathetic activity at rest, and reactivity of HRV was seen maximum during the MTT task. Young adults showed higher sympathetic activation to imposed demands of multitasking. Physical activity was able to predict executive scores and resting HRV. HRV was found to be associated with executive function performance in the adult population.

Author Biography

Shweta Shenoy, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.

MYAS-GNDU Department of Sports Sciences and Medicine, Professor and Head

References

Abhishekh, H. A., Nisarga, P., Kisan, R., Meghana, A., Chandran, S., Raju, T., & Sathyaprabha, T. N. (2013). Influence of age and gender on autonomic regulation of heart. Journal of Clinical Monitoring and Computing, 27, 259–264. https://doi.org/10.1007/s10877-012-9424-3

Agelink, M. W., Malessa, R., Baumann, B., Majewski, T., Akila, F., Zeit, T., & Ziegler, D. (2001). Standardized tests of heart rate variability: Normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clinical Autonomic Research, 11, 99–108. https://doi.org/10.1007/BF02322053

Albinet, C. T., Abou-Dest, A., André, N., & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 115, 69–77. https://doi.org/10.1016/j.biopsycho.2016.01.010

Albinet, C. T., Boucard, G., Bouquet, C. A., & Audiffren, M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109, 617–624. https://doi.org/10.1007/s00421-010-1393-y

Andel, R., Crowe, M., Kåreholt, I., Wastesson, J., & Parker, M. G. (2011). Indicators of job strain at midlife and cognitive functioning in advanced old age. The Journals of Gerontology Series B, 66B(3), 287–291. https://doi.org/10.1093/geronb/gbq105

Anstey, K. J., Sargent-Cox, K., Garde, E., Cherbuin, N., & Butterworth, P. (2014). Cognitive development over 8 years in midlife and its association with cardiovascular risk factors. Neuropsychology, 28(4), 653–665. https://doi.org/10.1037/neu0000044

Baevsky, R. M., & Chernikova, A. G. (2017). Heart rate variability analysis: Physiological foundations and main methods. Cardiometry, (10). https://doi.org/10.12710/cardiometry.2017.6676

Boutcher, Y. N., & Boutcher, S. H. (2006). Cardiovascular response to Stroop: Effect of verbal response and task difficulty. Biological Psychology, 73(3), 235–241. https://doi.org/10.1016/j.biopsycho.2006.04.005

Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48(11), 1342–1347. https://doi.org/10.1109/10.959330

Britton, A., Shipley, M., Malik, M., Hnatkova, K., Hemingway, H., & Marmot, M. (2007). Changes in heart rate and heart rate variability over time in middle-aged men and women in the general population (from the Whitehall II Cohort Study). The American Journal of Cardiology, 100(3), 524–527. https://doi.org/10.1016/j.amjcard.2007.03.056

Britton, A., Singh-Manoux, A., Hnatkova, K., Malik, M., Marmot, M. G., & Shipley, M. (2008). The association between heart rate variability and cognitive impairment in middle-aged men and women. Neuroepidemiology, 31(2), 115–121. https://doi.org/10.1159/000148257

Byrd, D. L., Reuther, E. T., McNamara, J. P. H., DeLucca, T. L., & Berg, W. K. (2015). Age differences in high frequency phasic heart rate variability and performance response to increased executive function load in three executive function tasks. Frontiers in Psychology, 5, 1470. https://doi.org/10.3389/fpsyg.2014.01470

Byrne, E. A., Fleg, J. L., Vaitkevicius, P. V., Wright, J., & Porges, S. W. (1996). Role of aerobic capacity and body mass index in the age-associated decline in heart rate variability. Journal of Applied Physiology, 81(2), 743–750. https://doi.org/10.1152/jappl.1996.81.2.743

Cakir, A. G., Ozden, A. V., Kerem, A. H., & Alptekin, J. O. (2019). Immediate effects of chiropractic thoracic manipulations on the autonomic nervous system. Journal of Orthopaedics Trauma Surgery and Related Research, 14(3).

Cambridge Cognition. (2006). CANTABeclipse. Test administration guide (manual version 3.0.0.). Cambridge Cognition Ltd., Cambridge.

Canabarro, S. L. S., Garcia, A., Satler, C., & Tavares, M. C. H. (2017). Interaction between neural and cardiac systems during the execution of the stroop task by young adults: Electroencephalographic activity and heart rate variability. AIMS Neuroscience, 4(1), 28–51. https://doi.org/10.3934/Neuroscience.2017.1.28

Capuana, L. J., Dywan, J., Tays, W. J., & Segalowitz, S. J. (2012). Cardiac workload and inhibitory control in younger and older adults. Biological Psychology, 90(1), 60–70. https://doi.org/10.1016/j.biopsycho.2012.02.018

Carnethon, M. R., Yan, L., Greenland, P., Garside, D. B., Dyer, A. R., Metzger, B., & Daviglus, M. L. (2008). Resting heart rate in middle age and diabetes development in older age. Diabetes Care, 31(2), 335–339. https://doi.org/10.2337/dc07-0874

Colzato, L. S., Jongkees, B. J., De Wit, M., Van Der Molen, M. J., & Steenbergen, L. (2018). Variable heart rate and a flexible mind: Higher resting-state heart rate variability predicts better task-switching. Cognitive, Affective, & Behavioral Neuroscience, 18, 730–738. https://doi.org/10.3758/s13415-018-0600-x

Critchley, H. D. (2009). Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. International Journal of Psychophysiology, 73(2), 88–94. https://doi.org/10.1016/j.ijpsycho.2009.01.012

Daly, M., McMinn, D., & Allan, J. L. (2015). A bidirectional relationship between physical activity and executive function in older adults. Frontiers in Human Neuroscience, 8, 1044. https://doi.org/10.3389/fnhum.2014.01044

De Meersman, R. E., & Stein, P. K. (2007). Vagal modulation and aging. Biological Psychology, 74(2), 165–173. https://doi.org/10.1016/j.biopsycho.2006.04.008

Delaney, J. P. A., & Brodie, D. A. (2000). Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Perceptual and Motor Skills, 91(2), 515–524.https://doi.org/10.2466/pms.2000.91.2.515

Dishman, R. K., Nakamura, Y., Garcia, M. E., Thompson, R. W., Dunn, A. L., & Blair, S. N. (2000). Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. International Journal of Psychophysiology, 37(2), 121–133. https://doi.org/10.1016/s0167-8760(00)00085-4

Duschek, S., Muckenthaler, M., Werner, N., & Del Paso, G. A. R. (2009). Relationships between features of autonomic cardiovascular control and cognitive performance. Biological Psychology, 81(2), 110–117. https://doi.org/10.1016/j.biopsycho.2009.03.003

Ferguson, H. J., Brunsdon, V. E. A., & Bradford, E. E. F. (2021). The developmental trajectories of executive function from adolescence to old age. Scientific Reports, 11(1), Article 1382. https://doi.org/10.1038/s41598-020-80866-1

Fishta, A., & Backé, E.-M. (2015). Psychosocial stress at work and cardiovascular diseases: An overview of systematic reviews. International Archives of Occupational and Environmental Health, 88, 997–1014. https://doi.org/10.1007/s00420-015-1019-0

Forte, G., Favieri, F., & Casagrande, M. (2019). Heart rate variability and cognitive function: A systematic review. Frontiers in Neuroscience, 13, 710. https://doi.org/10.3389/fnins.2019.00710

Frewen, J., Finucane, C., Savva, G. M., Boyle, G., Coen, R. F., & Kenny, R. A. (2013). Cognitive function is associated with impaired heart rate variability in ageing adults: the Irish longitudinal study on ageing wave one results. Clinical Autonomic Research, 23, 313–323. https://doi.org/10.1007/s10286-013-0214-x

Green, R., Till, C., Al-Hakeem, H., Cribbie, R., Téllez-Rojo, M. M., Osorio, E., Hu, H., & Schnaas, L. (2019). Assessment of neuropsychological performance in Mexico city youth using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Journal of Clinical and Experimental Neuropsychology, 41(3), 246–256. https://doi.org/10.1080/13803395.2018.1529229

Grässler, B., Dordevic, M., Darius, S., Vogelmann, L., Herold, F., Langhans, C., Halfpaap, N., Böckelmann, I., Müller, N. G., & Hökelmann, A. (2021). Age-related differences in cardiac autonomic control at resting state and in response to mental stress. Diagnostics, 11(12), 2218. https://doi.org/10.3390/diagnostics11122218

Grässler, B., Hökelmann, A., & Cabral, R. H. (2020). Resting heart rate variability as a possible marker of cognitive decline: A systematic review. Kinesiology, 52(1), 72–84. https://doi.org/10.26582/k.52.1.9

Gillie, B. L., Vasey, M. W., & Thayer, J. F. (2014). Heart rate variability predicts control over memory retrieval. Psychological Science, 25(2), 458–465. https://doi.org/10.1177/0956797613508789

Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2003). Vagal influence on working memory and attention. International Journal of Psychophysiology, 48(3), 263–274. https://doi.org/10.1016/S0167-8760(03)00073-4

Hoshikawa, Y., & Yamamoto, Y. (1997). Effects of Stroop color-word conflict test on the autonomic nervous system responses. American Journal of Physiology-Heart and Circulatory Physiology, 272(3), H1113–H1121. https://doi.org/10.1152/ajpheart.1997.272.3.H1113

Hughes, M. L., Agrigoroaei, S., Jeon, M., Bruzzese, M., & Lachman, M. E. (2018). Change in cognitive performance from midlife into old age: Findings from the Midlife in the United States (MIDUS) study. Journal of the International Neuropsychological Society, 24(8), 805–820. https://doi.org/10.1017/S1355617718000425

Jarczok, M. N., Jarczok, M., Mauss, D., Koenig, J., Li, J., Herr, R. M., & Thayer, J. F. (2013). Autonomic nervous system activity and workplace stressors—A systematic review. Neuroscience & Biobehavioral Reviews, 37(8), 1810–1823. https://doi.org/10.1016/j.neubiorev.2013.07.004

Kimhy, D., Crowley, O. V., McKinley, P. S., Burg, M. M., Lachman, M. E., Tun, P. A., Ryff, C. D., Seeman, T. E., & Sloan, R. P. (2013). The association of cardiac vagal control and executive functioning–findings from the MIDUS study. Journal of Psychiatric Research, 47(5), 628–635. https://doi.org/10.1016/j.jpsychires.2013.01.018

Laborde, S., Mosley, E., & Mertgen, A. (2018). Vagal tank theory: The three rs of cardiac vagal control functioning–resting, reactivity, and recovery. Frontiers in Neuroscience, 12, 458. https://doi.org/10.3389/fnins.2018.00458

Liu-Ambrose, T., Nagamatsu, L. S., Graf, P., Beattie, B. L., Ashe, M. C., & Handy, T. C. (2010). Resistance training and executive functions: A 12-month randomized controlled trial. Archives of Internal Medicine, 170(2), 170–178. https://doi.org/10.1001/archinternmed.2009.494

Luque-Casado, A., Perales, J. C., Cárdenas, D., & Sanabria, D. (2016). Heart rate variability and cognitive processing: The autonomic response to task demands. Biological Psychology, 113, 83–90. https://doi.org/10.1016/j.biopsycho.2015.11.013

Mahinrad, S., Jukema, J. W., Van Heemst, D., Macfarlane, P. W., Clark, E. N., De Craen, A. J., & Sabayan, B. (2016). 10-Second heart rate variability and cognitive function in old age. Neurology, 86(12), 1120–1127. https://doi.org/10.1212/WNL.0000000000002499

Mathewson, K. J., Jetha, M. K., Drmic, I. E., Bryson, S. E., Goldberg, J. O., Hall, G. B., Santesso, D. L., Segalowitz, S. J., & Schmidt, L. A. (2010). Autonomic predictors of Stroop performance in young and middle-aged adults. International Journal of Psychophysiology, 76(3), 123–129. https://doi.org/10.1016/j.ijpsycho.2010.02.007

Melo, R. C., Santos, M. D. B., Silva, E., Quitério, R. J., Moreno, M. A., Reis, M. S., Verzola, I. A., Oliveira, L., Martins, L. E. B., Gallo-Junior, L., & Catai, A. M. (2005). Effects of age and physical activity on the autonomic control of heart rate in healthy men. Brazilian Journal of Medical and Biological Research, 38(9), 1331–1338. https://doi.org/10.1590/S0100-879X2005000900007

Nahshoni, E., Aravot, D., Aizenberg, D., Sigler, M., Zalsman, G., Strasberg, B., Imbar, S., Adler, E., & Weizman, A. (2004). Heart rate variability in patients with major depression. Psychosomatics, 45(2), 129–134. https://doi.org/10.1176/appi.psy.45.2.129

Parasuraman, R., & Jiang, Y. (2012). Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches. NeuroImage, 59(1), 70–82. https://doi.org/10.1016/j.neuroimage.2011.04.040

Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 1–90). Lawrence Erlbaum Associates Publishers.

Reuter-Lorenz, P. A. (2000). Cognitive neuropsychology of the aging brain. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A primer (pp. 93–114). Psychology Press.

Robbins, T. W. (1994, May). Cambridge Neuropsychological Test Automated Battery (CANTAB): Utility and validation. In IEE Colloquium on Computer-Aided Tests of Drug Effectiveness (pp. 3–1). IET.

Sahakian, B. J., Morris, R. G., Evenden, J. L., Heald, A., Levy, R., Philpot, M., & Robbins, T. W. (1988). A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain, 111(3), 695–718. https://doi.org/10.1093/brain/111.3.695

Schapkin, S. A., Freude, G., Gajewski, P. D., Wild-Wall, N., & Falkenstein, M. (2012). Effects of working memory load on performance and cardiovascular activity in younger and older workers. International Journal of Behavioral Medicine, 19, 359–371. https://doi.org/10.1007/s12529-011-9181-6

Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258

Shah, A. J., Su, S., Veledar, E., Bremner, J. D., Goldstein, F. C., Lampert, R., Goldberg, J., & Vaccarino, V. (2011). Is heart rate variability related to memory performance in middle aged men? Psychosomatic Medicine, 73(6), 475–482. https://doi.org/10.1097/PSY.0b013e3182227d6a

Singh, J. P., Larson, M. G., Tsuji, H., Evans, J. C., O’Donnell, C. J., & Levy, D. (1998). Reduced heart rate variability and new-onset hypertension: Insights into pathogenesis of hypertension: The Framingham Heart Study. Hypertension, 32(2), 293–297. https://doi.org/10.1161/01.hyp.32.2.293

Singh-Manoux, A., Kivimaki, M., Glymour, M. M., Elbaz, A., Berr, C., Ebmeier, K. P., Ferrie, J. E., & Dugravot, A. (2012). Timing of onset of cognitive decline: Results from Whitehall II prospective cohort study. BMJ, 344. https://doi.org/10.1136/bmj.d7622

Stenfors, C. U., Hanson, L. M., Theorell, T., & Osika, W. S. (2016). Executive cognitive functioning and cardiovascular autonomic regulation in a population-based sample of working adults. Frontiers in Psychology, 7, 1536. https://doi.org/10.3389/fpsyg.2016.01536

Suchy, Y. (2009). Executive functioning: Overview, assessment, and research issues for non-neuropsychologists. Annals of Behavioral Medicine, 37(2), 106–116. https://doi.org/10.1007/s12160-009-9097-4

Suchy, Y. (2015). Executive functioning: A comprehensive guide for clinical practice. Oxford University Press.

Ter Horst, G. J., & Postema, F. (1997). Forebrain parasympathetic control of heart activity: Retrograde transneuronal viral labeling in rats. American Journal of Physiology-Heart and Circulatory Physiology, 273(6), H2926–H2930. https://doi.org/10.1152/ajpheart.1997.273.6.H2926

Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141–153. https://doi.org/10.1007/s12160-009-9101-z

Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216. https://doi.org/10.1016/S0165-0327(00)00338-4

Theorell, T., Jood, K., Järvholm, L. S., Vingård, E., Perk, J., Östergren, P. O., & Hall, C. (2016). A systematic review of studies in the contributions of the work environment to ischaemic heart disease development. The European Journal of Public Health, 26(3), 470–477. https://doi.org/10.1093/eurpub/ckw025

Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. Journal of the American College of Cardiology, 31(3), 593–601. https://doi.org/10.1016/S0735-1097(97)00554-8

Voss, A., Schroeder, R., Heitmann, A., Peters, A., & Perz, S. (2015). Short-term heart rate variability—influence of gender and age in healthy subjects. PLoS ONE, 10(3), Article e0118308. https://doi.org/10.1371/journal.pone.0118308

Wani, R. T., & Nabi, S. S. (2020). Reliability and validity of a culturally adaptive version of the international physical activity questionnaire in Indian subcontinent: A cross-sectional study. International Journal of Preventive Medicine, 11(1), 40. https://doi.org/10.4103/ijpvm.IJPVM_120_19

Williams, P. G., Cribbet, M. R., Tinajero, R., Rau, H. K., Thayer, J. F., & Suchy, Y. (2019). The association between individual differences in executive functioning and resting high-frequency heart rate variability. Biological Psychology, 148, 107772. https://doi.org/10.1016/j.biopsycho.2019.107772

Wright, C. E., O'Donnell, K., Brydon, L., Wardle, J., & Steptoe, A. (2007). Family history of cardiovascular disease is associated with cardiovascular responses to stress in healthy young men and women. International Journal of Psychophysiology, 63(3), 275–282. https://doi.org/10.1016/j.ijpsycho.2006.11.005

Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C., & Bugiardini, R. (2012). Heart rate variability today. Progress in Cardiovascular Diseases, 55(3), 321–331. https://doi.org/10.1016/j.pcad.2012.09.001

Yaffe, K., Vittinghoff, E., Pletcher, M. J., Hoang, T. D., Launer, L. J., Whitmer, R. A., Coker, L. H., & Sidney, S. (2014). Early adult to midlife cardiovascular risk factors and cognitive function. Circulation, 129(15), 1560–1567. https://doi.org/10.1161/CIRCULATIONAHA.113.004798

Zeki Al Hazzouri, A., Elfassy, T., Carnethon, M. R., Lloyd-Jones, D. M., & Yaffe, K. (2018). Heart rate variability and cognitive function in middle-age adults: the coronary artery risk development in young adults. American Journal of Hypertension, 31(1), 27–34. https://doi.org/10.1093/ajh/hpx125

Zhang, J. (2007). Effect of age and sex on heart rate variability in healthy subjects. Journal of Manipulative and Physiological Therapeutics, 30(5), 374–379. https://doi.org/10.1016/j.jmpt.2007.04.001

Downloads

Published

2023-06-29

Issue

Section

Research Papers