Neural Network Improvements Induced by REST Flotation in Chronic Lower Back Pain Patients: An Exploratory Investigation
DOI:
https://doi.org/10.15540/nr.10.2.118Keywords:
Electroencephalogram (EEG), Chronic lower back pain, REST flotation, Neural Networks, Default mode networkAbstract
Thalamocortical dysrhythmia is a shared hallmark of numerous neurodivergent conditions. Restricted environment stimulation therapy (REST) flotation causes desirable neural shifts in anxious or depressed populations towards classically defined healthy spectra. In this exploratory investigation, chronic lower back pain patients were randomly assigned to the experimental condition, six 1-hr REST flotation sessions, or the control condition, six 1-hr nap pod sessions. Participants underwent quantitative electroencephalograms (qEEG) before and after their six sessions. Chronic lower back pain patients were chosen because of the high prevalence of the disease condition and the known network changes that contribute to the transition of pain from acute to chronic. Results showed traditional qEEG pain-associated signatures shift to reflect more regulated, healthy activity across the pain and default mode networks in our experimental condition. Dysregulation in neural oscillations can be indicative of symptomology, and the changes observed in the experimental group reflect healthier activity in all frequency bands, while the control group showed no significant changes in any 1 Hz bin. These significant cross-spectral improvements show promise for REST flotation as a supplemental nonpharmacological treatment for chronic pain.
References
Al Zoubi, O., Misaki, M., Bodurka, J., Kuplicki, R., Wohlrab, C., Schoenhals, W. A., Refai, H. H., Khalsa, S. S., Stein, M. B., Paulus, M. P., & Feinstein, J. S. (2021). Taking the body off the mind: Decreased functional connectivity between somatomotor and default-mode networks following Floatation-REST. Human Brain Mapping, 42(10), 3216–3227. https://doi.org/10.1002/hbm.25429
Alshelh, Z., Marciszewski, K. K., Akhter, R., Di Pietro, F., Mills, E. P., Vickers, E. R., Peck, C. C., Murray, G. M., & Henderson, L. A. (2018). Disruption of default mode network dynamics in acute and chronic pain states. NeuroImage: Clinical, 17, 222–231. https://doi.org/10.1016/j.nicl.2017.10.019
Applied Neuroscience, Inc. (n.d.). NeuroGuide (Version 3.2.7) [Computer software].
Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A. I., Cordone, S., Gesualdo, L., & Del Percio, C. (2016). Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms. International Journal of Psychophysiology, 103, 88-102. https://doi.org/10.1016/j.ijpsycho.2015.02.008
Baenninger, A., Palzes, V. A., Roach, B. J., Mathalon, D. H., Ford, J. M., & Koenig, T. (2017). Abnormal coupling between default mode network and delta and beta band brain electric activity in psychotic patients. Brain Connectivity, 7(1), 34–44. https://doi.org/10.1089/brain.2016.0456
Betti, V., Della Penna, S., De Pasquale, F., & Corbetta, M. (2021). Spontaneous beta band rhythms in the predictive coding of natural stimuli. Neuroscientist, 27(2), 184–201. https://doi.org/10.1177/1073858420928988
Cecchetti, G., Agosta, F., Basaia, S., Cividini, C., Cursi, M., Santangelo, R., Caso, C., Minicucci, F., Magnani, G., & Filippi, M. (2021). Resting-state electroencephalographic biomarkers of Alzheimer's disease. NeuroImage: Clinical, 31, 102711. https://doi.org/10.1016/j.nicl.2021.102711
Chen, S., Chen, M., Wu, X., Lin, S., Tao, C., Cao, H., Shao, Z., & Xiao, G. (2022). Global, regional and national burden of low back pain 1990–2019: A systematic analysis of the Global Burden of Disease study 2019. Journal of Orthopaedic Translation, 32, 49–58. https://doi.org/10.1016/j.jot.2021.07.005
Cognionics. (n.d.). CGX Quick-20m wireless 20-channel EEG headset. [Apparatus].
de Pasquale, F., Della Penna, S., Snyder, A. Z., Marzetti, L., Pizzella, V., Romani, G. L., & Corbetta, M. (2012). A cortical core for dynamic integration of functional networks in the resting human brain. Neuron, 74(4), 753–764. https://doi.org/10.1016/j.neuron.2012.03.031
Díaz, H., Cid, F. M., Otárola, J., Rojas, R., Alarcón, O., & Cañete, L. (2019). EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Computer Science, 162, 974–981. https://doi.org/10.1016/j.procs.2019.12.075
Diaz-Piedra, C., Sebastián, M. V., & Di Stasi, L. L. (2020). EEG theta power activity reflects workload among army combat drivers: an experimental study. Brain Sciences, 10(4), 199. https://doi.org/10.3390/brainsci10040199
Engel, A. K., & Fries, P. (2010). Beta-band oscillations—signalling the status quo? Current Opinion in Neurobiology, 20(2), 156–165. https://doi.org/10.1016/j.conb.2010.02.015
Fallon, N., Chiu, Y., Nurmikko, T., & Stancak, A. (2018). Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. European Journal of Pain, 22(1), 49–57. https://doi.org/10.1002/ejp.1076
Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154. https://doi.org/10.3389/fpsyg.2011.00154
Furman, A. J., Prokhorenko, M., Keaser, M. L., Zhang, J., Chen, S., Mazaheri, A., & Seminowicz, D. A. (2020). Sensorimotor peak alpha frequency is a reliable biomarker of prolonged pain sensitivity. Cerebral Cortex, 30(12), 6069–6082. https://doi.org/10.1093/cercor/bhaa124
Gollan, J. K., Hoxha, D., Chihade, D., Pflieger, M. E., Rosebrock, L., & Cacioppo, J. (2014). Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biological Psychology, 99, 198–208. https://doi.org/10.1016/j.biopsycho.2014.03.003
Gore, M., Sadosky, A., Stacey, B. R., Tai, K.-S., & Leslie, D. (2012). The burden of chronic low back pain: Clinical comorbidities, treatment patterns, and health care costs in usual care settings. Spine, 37(11), E668–E677. https:doi.org/10.1097/BRS.0b013e318241e5de
Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7, 83. https://doi.org/10.3389/fnint.2013.00083
Hassan, M. A., Fraser, M., Conway, B. A., Allan, D. B., & Vuckovic, A. (2015). The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: A pilot study. BMC Neurology, 15, Article 200. https://doi.org/10.1186/s12883-015-0445-7
Jafari, Z., Kolb, B. E., & Mohajerani, M. H. (2020). Neural oscillations and brain stimulation in Alzheimer's disease. Progress in Neurobiology, 194, 101878. https://doi.org/10.1016/j.pneurobio.2020.101878
Jonsson, K., & Kjellgren, A. (2016). Promising effects of treatment with flotation-REST (restricted environmental stimulation technique) as an intervention for generalized anxiety disorder (GAD): A randomized controlled pilot trial. BMC Complementary and Alternative Medicine, 16, Article 108. https://doi.org/10.1186/s12906-016-1089-x
Kisler, L. B., Kim, J. A., Hemington, K. S., Rogachov, A., Cheng, J. C., Bosma, R. L., Osborne, N. R., Dunkley, B. T., Inman, R. D., & Davis, K. D. (2020). Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component. NeuroImage: Clinical, 26, 102241. https://doi.org/10.1016/j.nicl.2020.102241
Klimesch, W., Freunberger, R., Sauseng, P., & Gruber, W. (2008). A short review of slow phase synchronization and memory: Evidence for control processes in different memory systems? Brain Research, 1235, 31–44. https://doi.org/10.1016/j.brainres.2008.06.049
Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V., & Pylkova, L. V. (2011). The default mode network and EEG alpha oscillations: An independent component analysis. Brain Research, 1402, 67–79. https://doi.org/10.1016/j.brainres.2011.05.052
Koo, P. C., Thome, J., Berger, C., Foley, P., & Hoeppner, J. (2017). Current source density analysis of resting state EEG in depression: A review. Journal of Neural Transmission (Vienna), 124(Suppl. 1), 109–118. https://doi.org/10.1007/s00702-015-1432-2
Kucyi, A., Moayedi, M., Weissman-Fogel, I., Goldberg, M. B., Freeman, B. V., Tenenbaum, H. C., & Davis, K. D. (2014). Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. The Journal of Neuroscience, 34(11), 3969–3975. https://doi.org/10.1523/JNEUROSCI.5055-13.2014
Lee, S.-H., Yoon, S., Kim, J.-I., Jin, S.-H., & Chung, C. K. (2014). Functional connectivity of resting state EEG and symptom severity in patients with post-traumatic stress disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 51, 51–57. https://doi.org/10.1016/j.pnpbp.2014.01.008
Li, Y.-D., Ge, J., Luo, Y.-J., Xu, W., Wang, J., Lazarus, M., Hong, Z.-Y., Qu, W.-M., & Huang, Z.-L. (2020). High cortical delta power correlates with aggravated allodynia by activating anterior cingulate cortex GABAergic neurons in neuropathic pain mice. Pain, 161(2), 288–299. https://doi.org/10.1097/j.pain.0000000000001725
Li, L., Pagnotta, M. F., Arakaki, X., Tran, T., Strickland, D., Harrington, M., & Zouridakis, G. (2015). Brain activation profiles in mTBI: Evidence from combined resting-state EEG and MEG activity. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6963–6966) Milan, Italy https://doi.org/10.1109/EMBC.2015.7319994
Lindsay, N. M., Chen, C., Gilam, G., Mackey, S., & Scherrer, G. (2021). Brain circuits for pain and its treatment. Science Translational Medicine, 13(619), eabj7360. https://doi.org/10.1126/scitranslmed.abj7360
Loggia, M. L., Kim, J., Gollub, R. L., Vangel, M. G., Kirsch, I., Kong, J., Wasan, A. D., & Napadow, V. (2013). Default mode network connectivity encodes clinical pain: An arterial spin labeling study. Pain, 154(1), 24–33. https://doi.org/10.1016/j.pain.2012.07.029
MetroNaps. (n.d.). EnergyPod nap pod. [Apparatus]. https://metronaps.com/#energypod
Mohan, A., Roberto, A. J., Mohan, A., Lorenzo, A., Jones, K., Carney, M. J., Liogier-Weyback, L., Hwang, S., & Lapidus, K. A. (2016). The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: A review. Yale Journal of Biology and Medicine, 89(1), 49–57.
Moon, S.-Y., Choi, Y. B., Jung, H. K., Lee, Y. I., & Choi, S.-H. (2018). Increased frontal gamma and posterior delta powers as potential neurophysiological correlates differentiating posttraumatic stress disorder from anxiety disorders. Psychiatry Investigation, 15(11), 1087–1093. https://doi.org/10.30773/pi.2018.09.30
Neuner, I., Arrubla, J., Werner, C. J., Hitz, K., Boers, F., Kawohl, W., & Shah, N. J. (2014). The default mode network and EEG regional spectral power: A simultaneous fMRI-EEG study. PLoS ONE, 9(2), Article e88214. https://doi.org/10.1371/journal.pone.0088214
Özbek, Y., Fide, E., & Yener, G. G. (2021). Resting-state EEG alpha/theta power ratio discriminates early-onset Alzheimer's disease from healthy controls. Clinical Neurophysiology, 132(9), 2019–2031. https://doi.org/10.1016/j.clinph.2021.05.012
Palmero-Soler, E., Dolan, K., Hadamschek, V., & Tass, P. A. (2007). swLORETA: A novel approach to robust source localization and synchronization tomography. Physics in Medicine & Biology, 52(7), 1783–1800. https://doi.org/10.1088/0031-9155/52/7/002
Pinheiro, E. S. D. S., De Queirós, F. C., Montoya, P., Santos, C. L., Do Nascimento, M. A., Ito, C. H., Silva, M., Santos, D. B. N., Benevides, S., Miranda, J. G. V., Sá, K. N., & Bapista A. F. (2016). Electroencephalographic patterns in chronic pain: A systematic review of the literature. PLoS ONE, 11(2), Article e0149085. https://doi.org/10.1371/journal.pone.0149085
Prichep, L. S., Shah, J., Merkin, H., & Hiesiger, E. M. (2018). Exploration of the pathophysiology of chronic pain using quantitative EEG source localization. Clinical EEG and Neuroscience, 49(2), 103-113. https://doi.org/10.1177/1550059417736444
Qualtrics. (2023). Online intake survey. [Software].
Scheeringa, R., Bastiaansen, M. C., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67(3), 242–251. https://doi.org/10.1016/j.ijpsycho.2007.05.017
Schuurman, B. B., Vossen, C. J., Van Amelsvoort, T. A. M. J., & Lousberg, R. L. (2023). Does baseline EEG activity differ in the transition to or from a chronic pain state? A longitudinal study. Pain Practice, 23(5), 479–492. https://doi.org/10.1111/papr.13204
Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: A topographical perspective. Nature Reviews Neuroscience, 22(8), 503–513. https://doi.org/10.1038/s41583-021-00474-4
Sterman, M. B., Mann, C. A., Kaiser, D. A., & Suyenobu, B. Y. (1994). Multiband topographic EEG analysis of a simulated visuomotor aviation task. International Journal of Psychophysiology, 16(1), 49–56. https://doi.org/10.1016/0167-8760(94)90041-8
Superior Float Tanks. (n.d.). Deluxe Quest Flotation Suite. [Apparatus]. https://www.superiorfloattanks.com/new-products-1/the-deluxe-quest-float-suite
Teixeira, P. E. P., Pacheco-Barrios, K., Uygur-Kucukseymen, E., Machado, R. M., Balbuena-Pareja, A., Giannoni-Luza, S., Luna-Cuadros, M. A., Cardenas-Rojas A., Gonzalez-Mego P., Mejia-Pando, P.F., Wagner, T., Dipietro., & Fregni, F. (2022). Electroencephalography signatures for conditioned pain modulation and pain perception in nonspecific chronic low back pain-an exploratory study. Pain Medicine, 23(3), 558–570. https://doi.org/10.1093/pm/pnab293
Thatcher, R. (2008). NeuroGuide manual and tutorial. St. Petersburg, FL: Applied Neuroscience.
Trammell, J. P., MacRae, P. G., Davis, G., Bergstedt, D., & Anderson, A. E. (2017). The relationship of cognitive performance and the theta-alpha power ratio is age-dependent: An EEG study of short term memory and reasoning during task and resting-state in healthy young and old adults. Frontiers in Aging Neuroscience, 9, 364. https://doi.org/10.3389/fnagi.2017.00364
Tu, Y., Fu, Z., Mao, C., Falahpour, M., Gollub, R. L., Park, J., Wilson, G., Napadow, V., Gerber, J., Chan, S.-T., Edwards, R. R., Kaptchuk, T. J., Liu, T., Calhoun, V., Rosen, B., & Kong, J. (2020). Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nature Communications, 11(1), Article 3948. https://doi.org/10.1038/s41467-020-17788-z
Vanneste, S., Song, J.-J., & De Ridder, D. (2018). Thalamocortical dysrhythmia detected by machine learning. Nature Communications, 9(1), Article 1103. https://doi.org/10.1038/s41467-018-02820-0
Vučković, A., Altaleb, M. K. H., Fraser, M., McGeady, C., & Purcell, M. (2019). EEG correlates of self-managed neurofeedback treatment of central neuropathic pain in chronic spinal cord injury. Frontiers in Neuroscience, 13, 762. https://doi.org/10.3389/fnins.2019.00762
Wang, S.-Y., Lin, I.-M., Fan, S.-Y., Tsai, Y.-C., Yen, C.-F., Yeh, Y.-C., Huang, M.-F., Lee, Y., Chiu, N.-M., Hung, C.-F., Wang, P.-W., Liu, T.-L., & Lin, H.-C. (2019). The effects of alpha asymmetry and high-beta down-training neurofeedback for patients with the major depressive disorder and anxiety symptoms. Journal of Affective Disorders, 257, 287–296. https://doi.org/10.1016/j.jad.2019.07.026
White, T. P., Jansen, M., Doege, K., Mullinger, K. J., Park, S. B., Liddle, E. B., Gowland, P. A., Francis, S. T., Bowtell, R., & Liddle, P. F. (2013). Theta power during encoding predicts subsequent-memory performance and default mode network deactivation. Human Brain Mapping, 34(11), 2929–2943. https://doi.org/10.1002/hbm.22114
Zolezzi, D. M., Alonso-Valerdi, L. M., & Ibarra-Zarate, D. I. (2023). EEG frequency band analysis in chronic neuropathic pain: A linear and nonlinear approach to classify pain severity. Computer Methods and Programs in Biomedicine, 230, 107349. https://doi.org/10.1016/j.cmpb.2023.107349
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Tyler A. McGaughey, Mary K. Gregg, Victor S. Finomore
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).