In Neurofeedback Training, Harder is Not Necessarily Better: The Power of Positive Feedback in Facilitating Brainwave Self-Regulation

Authors

  • Revital Yonah BetterFly Neurofeedback

DOI:

https://doi.org/10.15540/nr.10.1.31

Keywords:

neurofeedback, EEG-Biofeedback, implicit learning, basal-ganglia, threshold, reward, positive feedback

Abstract

Neurofeedback is gaining recognition as an efficient, effective treatment for a variety of different psychological and neuropsychiatric disorders. Its value has been shown in robust clinical studies. However, a certain percentage of clients do not respond to this treatment modality. We suggest performing easier sessions so that clients receive an increased rate of positive feedback. This may encourage positive response to neurofeedback. Research has shown that implicit learning, the type of learning involved in neurofeedback, is better achieved with high levels of positive feedback. In addition, psychological factors related to attention, motivation, cooperation, and positive affect may also be contributing to this facilitatory effect. The relevant theoretical background and supporting evidence are provided.

References

Alkoby, O., Abu-Rmileh, A., Shriki, O., & Todder, D. (2018). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience, 378, 155–164. https://doi.org/10.1016/j.neuroscience.2016.12.050

Argyelan, M., Herzallah, M., Sako, W., DeLucia, I., Sarpal, D., Vo, A, Fitzpatrick, T., Moustafa, A. A., Eidelberg, D., & Gluck, M. (2018). Dopamine modulates striatal response to reward and punishment in patients with Parkinson’s disease: A pharmacological challenge fMRI study. NeuroReport, 29(7), 532–540. https://doi.org/10.1097/wnr.0000000000000970

Ayers, M. E., Sams, M. W., & Sterman, M. B. (2000). When to inhibit EEG activity instead of reinforcing and inhibiting simultaneously. Journal of Neurotherapy, 4(1), 83–93. https://doi.org/10.1300/J184v04n01_10

Barabasz, A. F., & Barabasz, M. (1999). Treating ADHD with hypnosis and neurotherapy. Paper presented at the 1999 Annual Convention of the American Psychological Association. Boston, MA. https://files.eric.ed.gov/fulltext/ED435076.pdf

Barbero, Á., & Grosse-Wentrup, M. (2010). Biased feedback in brain-computer interfaces. Journal of NeuroEngineering and Rehabilitation, 7, Article 34. https://doi.org/10.1186/1743-0003-7-34

Birbaumer, N., Ruiz, S., & Sitaram, R. (2013). Learned regulation of brain metabolism. Trends in Cognitive Sciences, 17(6), 295–302. https://doi.org/10.1016/j.tics.2013.04.009

Boddy, J., Carver, A., & Rowley, K. (1986). Effects of positive and negative verbal reinforcement on performance as a function of extraversion-introversion: Some tests of Gray's theory. Personality and Individual Differences, 7(1), 81–88. https://doi.org/10.1016/0191-8869(86)90111-X

Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815–834. https://doi.org/10.1016/j.neuron.2010.11.022

Chafee, M. V., & Crowe, D. A. (2017). Implicit and explicit learning mechanisms meet in monkey prefrontal cortex. Neuron, 96(2), 256–258. https://doi.org/10.1016/j.neuron.2017.09.049

Chib, V. S., De Martino, B., Shimojo, S., & O'Doherty, J. P. (2012). Neural mechanisms underlying paradoxical performance for monetary incentives are driven by loss aversion. Neuron, 74(3), 582–594. https://doi.org/10.1016/j.neuron.2012.02.038

Clemente, C. D., Sterman, M. B., & Wyrwicka, W. (1964). Post-reinforcement EEG synchronization during alimentary behavior. Electroencephalography and Clinical Neurophysiology, 16(4), 355–365. https://doi.org/10.1016/0013-4694(64)90069-0

Cohen Kadosh, K., & Staunton, G. (2019). A systematic review of the psychological factors that influence neurofeedback learning outcomes. NeuroImage, 185, 545–555, https://doi.org/10.1016/j.neuroimage.2018.10.021

Collura, T. F. (2014). Technical foundations of neurofeedback (pp. 16–17). Routledge.

Curran, E. A., & Stokes, M. J. (2003). Learning to control brain activity: A review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain and Cognition, 51(3), 326–336. https://doi.org/10.1016/S0278-2626(03)00036-8

Daffertshofer, A., & van Wijk, B. C. M. (2011). On the influence of amplitude on the connectivity between phases. Frontiers in Neuroinformatics, 5, 6. https://doi.org/10.3389/fninf.2011.00006

Davelaar, E. J. (2017). A computational approach to developing cost-efficient adaptive-threshold algorithms for EEG neuro feedback. International Journal of Structural and Computational Biology, 1(2), 1–4. https://eprints.bbk.ac.uk/id/eprint/21537/1/21537.pdf

Davelaar, E. J. (2018). Mechanisms of neurofeedback: A computation-theoretic approach. Neuroscience, 378, 175–188. https://doi.org/10.1016/j.neuroscience.2017.05.052

Egner, T., Zech, T. F., & Gruzelier, J. H. (2004). The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology, 115(11), 2452–2460. https://doi.org/10.1016/j.clinph.2004.05.033

Elliott, R., Agnew, Z., & Deakin, J. F. W. (2010). Hedonic and informational functions of the human orbitofrontal cortex. Cerebral Cortex, 20(1), 198–204. https://doi.org/10.1093/cercor/bhp092

Emmert, K., Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E. J., Horovitz, S. G., Breimhorst, M., Caria, A., Frank, S., Johnston, S., Long, Z., Paret., C., Robineau, F., Veit, R., Bartsch, A., Beckmann, C. F., Van De Ville, D., & Haller, S. (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage, 124(Part A), 806–812. https://doi.org/10.1016/j.neuroimage.2015.09.042

Evans, J. J., Wilson, B. A., Schuri, U., Andrade, J., Baddeley, A., Bruna, O., Canavan, T., Del Sala, S., Green, R., Laaksonen, R., Lorenzi, L., & Taussik, I. (2000). A comparison of ''errorless'' and ''trial-and-error'' learning methods for teaching individuals with acquired memory deficits. Neuropsychological Rehabilitation, 10(1), 67–101. https://doi.org/10.1080/096020100389309

Fehmi, L. G., & Robbins, J. (2008). The open-focus brain: harnessing the power of attention to heal mind and body (pp. 29–40). Boulder, CO: Shambhala Publications.

Fisher, S. F. (2014). Neurofeedback in the treatment of developmental trauma: Calming the fear-driven brain (pp. 277–324). W.W. Norton & Company.

Frank, M., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47(4), 495–501. https://doi.org/10.1016/j.neuron.2005.06.020

Gastaldi, F. (2023, February). Neurofeedback, tutto sulla tecnica scelta da Marco Mengoni per liberarsi dallo stress. Vanity Fair. https://www.vanityfair.it/article/neurofeedback-come-funziona-tecnica-marco-mengoni-anti-stress

Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience & Biobehavioral Reviews, 44, 159–182. https://doi.org/10.1016/j.neubiorev.2014.03.015

Hardt, J. V., & Kamiya, J. (1976). Conflicting results in EEG alpha feedback studies. Biofeedback and Self-Regulation, 1(1), 63–75. https://doi.org/10.1007/BF00998691

Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A., & Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer's, Huntington's, and Parkinson's disease patients. The Journal of Neuroscience, 9(2), 582–587. https://doi.org/10.1523/JNEUROSCI.09-02-00582.1989

Johnson, M. L., & Bodenhamer-Davis, E. (2009). QEEG-based protocol selection: A study of level of agreement on sites, sequences, and rationales among a group of experienced QEEG-based neurofeedback practitioners. Journal of Neurotherapy, 13(1), 41–66. https://doi.org/10.1080/10874200802668416

Klöbl, M., Michenthaler, P., Godbersen, G. M., Robinson, S., Hahn, A., & Lanzenberger, R. (2020). Reinforcement and punishment shape the learning dynamics in fMRI neurofeedback. Frontiers in Human Neuroscience, 14, 304. https://doi.org/10.3389/fnhum.2020.00304

Knox, S. S. (1980). Distribution of ‘criterion’ alpha in the resting EEG: Further argument against the use of an amplitude threshold in alpha biofeedback training. Biological Psychology, 11(1), 1–6. https://doi.org/10.1016/0301-0511(80)90021-6

Kober, S. E., Witte, M., Ninaus, M., Neuper, C., & Wood, G. (2013). Learning to modulate one's own brain activity: The effect of spontaneous mental strategies. Frontiers in Human Neuroscience, 7, 695. https://doi.org/10.3389/fnhum.2013.00695

Koralek, A. C., Jin, X., Long II, J. D., Costa, R. M., & Carmena, J. M. (2012). Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature, 483(7389), 331–335. https://doi.org/10.1038/nature10845

Lam, S.-L., Criaud, M., Alegria, A., Barker, G. J., Giampietro, V., & Rubia, K. (2020). Neurofunctional and behavioural measures associated with fMRI-neurofeedback learning in adolescents with Attention-Deficit/Hyperactivity Disorder. NeuroImage Clinical, 27, 102291. https://doi.org/10.1016/j.nicl.2020.102291

Lansbergen, M. M., van Dongen-Boomsma, M., Buitelaar, J. K., & Slaats-Willemse, D. (2011). ADHD and EEG-neurofeedback: A double-blind randomized placebo-controlled feasibility study. Journal of Neural Transmission, 118, 275–284. https://doi.org/10.1007/s00702-010-0524-2

Lin, J. J., Mamykina, L., Lindtner, S., Delajoux, G., & Strub, H. B. (2006). Fish’n’Steps: Encouraging physical activity with an interactive computer game. In P. Dourish, & A. Friday (Eds.), UbiComp 2006: Ubiquitous computing. Lecture Notes in Computer Science, vol. 4206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11853565_16

Logemann, H. N. A., Lansbergen, M. M., Van Os, T. W. D. P., Böcker, K. B. E., & Kenemans, J. L. (2010). The effectiveness of EEG-feedback on attention, impulsivity and EEG: A sham feedback controlled study. Neuroscience Letters, 479(1), 49–53. https://doi.org/10.1016/j.neulet.2010.05.026

Loonis, R. F., Brincat, S. L., Antzoulatos, E. G., & Miller, E. K. (2017). A meta-analysis suggests different neural correlates for implicit and explicit learning. Neuron, 96(2), 521–534.e7. https://doi.org/10.1016/j.neuron.2017.09.032

Marczynski, T. J., Harris, C. M., & Livezey, G. T. (1981). The magnitude of post-reinforcement EEG synchronization (PRS) in cats reflects learning ability. Brain Research, 204(1), 214–219. https://doi.org/10.1016/0006-8993(81)90667-3

Maxwell, J. P., Masters, R. S. W., Kerr, E., & Weedon, E. (2001). The implicit benefit of learning without errors. The Quarterly Journal of Experimental Psychology: A Human Experimental Psychology, 54A(4), 1049–1068. https://doi.org/10.1080%2F713756014

Mobbs, D., Hassabis, D., Seymour, B., Marchant, J. L., Weiskopf, N., Dolan, R. J., & Frith, C. D. (2009). Choking on the money: Reward-based performance decrements are associated with midbrain activity. Psychology Science, 20(8), 955–962. https://doi.org/10.1111/j.1467-9280.2009.02399.x

Mohammadi, H. S., Pirbabaei, E., Sisi, M. J., & Sekhavat, Y. A. (2018). ExerBrain: A comparison of positive and negative reinforcement in attention training using BCI based computer games. In 2018 2nd National and 1st International Digital Games Research Conference: Trends, Technologies, and Applications (DGRC), 11, 167–171. Tehran, Iran. https://doi.org/10.1109/DGRC.2018.8712048.

Nam, S., & Choi, S. (2020). Effect of threshold setting on neurofeedback training. NeuroRegulation, 7(3), 107–117. https://doi.org/10.15540/nr.7.3.107

Nijboer, F., Birbaumer, N., & Kübler, A. (2010). The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study. Frontiers in Neuropharmacology, 4, 55. https://doi.org/10.3389/fnins.2010.00055

Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. https://doi.org/10.1016/j.paid.2012.11.037

Oblak, E. F., Sulzer, J. S., & Lewis-Peacock, J. A. (2019). A simulation-based approach to improve decoded neurofeedback performance. NeuroImage, 195, 300–310. https://doi.org/10.1016/j.neuroimage.2019.03.062

O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95–102. https://doi.org/10.1038/82959

Othmer, S. (2009). In J. R. Evans, T. H. Budzynski, H. K. Budzynski, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (pp. 3–26). Academic Press.

Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Moyano, J. C., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550. https://doi.org/10.1038/35107080

Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24(3), 362–378. https://doi.org/10.1016/j.humov.2005.06.006

Radua, J., Stoica, T., Scheinost, D., Pittenger, C., & Hampson, M. (2018). Neural correlates of success and failure signals during neurofeedback learning. Neuroscience, 378, 11–21. https://doi.org/10.1016/j.neuroscience.2016.04.003

Ramot, M., Grossman, S., Friedman, D., & Malach, R. (2016). Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. PNAS Proceedings of the National Academy of Sciences of the United States of America, 113(17), E2413–E2420. https://doi.org/10.1073/pnas.1516857113

Reinschluessel, A. V., & Mandryk, R. L. (2016). Using positive or negative reinforcement in neurofeedback games for training self-regulation. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play (pp. 186–198). https://doi.org/10.1145/2967934.2968085

Rogala, J., Jurewicz, K., Paluch, K., Kublik, E., Cetnarski, R., & Wróbel, A. (2016). The do's and don'ts of neurofeedback training: A review of the controlled studies using healthy adults. Frontiers in Human Neuroscience, 10, 301. https://doi.org/10.3389/fnhum.2016.00301

Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10(1), Article 87. https://doi.org/10.1186/1471-2202-10-87

Ros, T., Frewen, P., Théberge, J., Michela, A., Kluetsch, R., Mueller, A., Candrian, G., Jetly, R., Vuilleumier, P., & Lanius, R. A. (2017). Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cerebral Cortex, 27(10), 4911–4922. https://doi.org/10.1093/cercor/bhw285

Sasaki, Y., Nanez, J. & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60. https://doi.org/10.1038/nrn2737

Schafer, R. J., & Moore, T. (2011). Selective attention from voluntary control of neurons in prefrontal cortex. Science, 332(6037), 1568–1571. https://doi.org/10.1126/science.1199892

Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy, 15(4), 292–304. https://doi.org/10.1080/10874208.2011.623089

Shibata, K., Yamagishi, N., Ishii, S., & Kawato, M. (2009). Boosting perceptual learning by fake feedback. Vision Research, 49(21), 2574–2585. https://doi.org/10.1016/j.visres.2009.06.009

Shourie, N., Firoozabadi, M., & Badie, K. (2018). Fuzzy adaptive neurofeedback training: An efficient neurofeedback training procedure providing a more accurate progress rate for trainee. Biomedical Signal Processing and Control, 44, 75–81. https://doi.org/10.1016/j.bspc.2018.02.009

Siniatchkin, M., Kropp, P., & Gerber, W.-D. (2000). Neurofeedback–The significance of reinforcement and the search for an appropriate strategy for the success of self-regulation. Applied Psychophysiology and Biofeedback 25(3), 167–175. https://doi.org/10.1023/A:1009502808906

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N., & Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. https://doi.org/10.1038/nrn.2016.164

Skinner, B. F. (1945). The operational analysis of psychological terms. Psychological Review, 52(5), 270–277. https://doi.org/10.1037/h0062535

Skottnik, L., Sorger, B., Kamp, T., Linden, D., & Goebel, R. (2019). Success and failure of controlling the real‐time functional magnetic resonance imaging neurofeedback signal are reflected in the striatum. Brain and Behavior, 9(3), Article e01240. https://doi.org/10.1002/brb3.1240

Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35. https://doi.org/10.1007/s10484-006-9002-x

Sterman, M. B., Mann, C. A., & Kaiser, D. A. (1993, February). Quantitative EEG patterns of differential in-flight workload. In NASA. Johnson Space Center, Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), Volume 2.

Strehl, U. (2014). What learning theories can teach us in designing neurofeedback treatments. Frontiers in Human Neuroscience, 8, 894. https://doi.org/10.3389/fnhum.2014.00894

Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan, K. E., Luft, A., & Gassert, R. (2013). Neurofeedbackmediated self-regulation of the dopaminergic midbrain. NeuroImage, 83, 817–825. https://doi.org/10.1016/j.neuroimage.2013.05.115

Thompson, L., & Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD. Applied Psychophysiology and Biofeedback, 23(4), 243–263. https://doi.org/10.1023/A:1022213731956

Thorndike, E. L. (1999). Animal intelligence (p. v). Bristol, UK: Thoemmes. (Original work published 1911).

Tsushima, Y., Seitz, A. R., & Watanabe, T. (2008). Task-irrelevant learning occurs only when the irrelevant feature is weak. Current Biology, 18(12), R516–R517. https://doi.org/10.1016/j.cub.2008.04.029

Van der Kolk, B. (2014). The body keeps the score: Brain, mind, and body in the healing of trauma (pp. 309–329). Penguin Publishing Group.

Van Doren, J., Heinrich, H., Bezold, M., Reuter, N., Kratz, O., Horndasch, S., Berking, M., Ros, T., Gevensleben, H., Moll, G. H., & Studer, P. (2017). Theta/beta neurofeedback in children with ADHD: Feasibility of a short-term setting and plasticity effects. International Journal of Psychophysiology, 112, 80–88. https://doi.org/10.1016/j.ijpsycho.2016.11.004

Vernon, D., Dempster, T., Bazanova, O. M., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214–227. https://doi.org/10.1080/10874200903334397

Wächter, T., Lungu, O. V., Liu, T., Willingham, D. T., & Ashe, J. (2009). Differential effect of reward and punishment on procedural learning. Journal of Neuroscience, 29(2), 436–443. https://doi.org/10.1523/JNEUROSCI.4132-08.2009

White, N. E., & Richards, L. M. (2009). Alpha–theta neurotherapy and the neurobehavioral treatment of addictions, mood disorders and trauma. In J. R. Evans, T. H. Budzynski, H. K. Budzynski, & A. Abarbanel (Eds.). Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (pp. 143–164). Academic Press.

Zuberer, A., Brandeis, D., & Drechsler, R. (2015). Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity. Frontiers in Human Neuroscience, 9, 135. https://doi.org/10.3389/fnhum.2015.00135

Downloads

Published

2023-03-30

Issue

Section

Clinical Corner