In Neurofeedback Training, Harder is Not Necessarily Better: The Power of Positive Feedback in Facilitating Brainwave Self-Regulation
DOI:
https://doi.org/10.15540/nr.10.1.31Keywords:
neurofeedback, EEG-Biofeedback, implicit learning, basal-ganglia, threshold, reward, positive feedbackAbstract
Neurofeedback is gaining recognition as an efficient, effective treatment for a variety of different psychological and neuropsychiatric disorders. Its value has been shown in robust clinical studies. However, a certain percentage of clients do not respond to this treatment modality. We suggest performing easier sessions so that clients receive an increased rate of positive feedback. This may encourage positive response to neurofeedback. Research has shown that implicit learning, the type of learning involved in neurofeedback, is better achieved with high levels of positive feedback. In addition, psychological factors related to attention, motivation, cooperation, and positive affect may also be contributing to this facilitatory effect. The relevant theoretical background and supporting evidence are provided.
References
Alkoby, O., Abu-Rmileh, A., Shriki, O., & Todder, D. (2018). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience, 378, 155–164. https://doi.org/10.1016/j.neuroscience.2016.12.050
Argyelan, M., Herzallah, M., Sako, W., DeLucia, I., Sarpal, D., Vo, A, Fitzpatrick, T., Moustafa, A. A., Eidelberg, D., & Gluck, M. (2018). Dopamine modulates striatal response to reward and punishment in patients with Parkinson’s disease: A pharmacological challenge fMRI study. NeuroReport, 29(7), 532–540. https://doi.org/10.1097/wnr.0000000000000970
Ayers, M. E., Sams, M. W., & Sterman, M. B. (2000). When to inhibit EEG activity instead of reinforcing and inhibiting simultaneously. Journal of Neurotherapy, 4(1), 83–93. https://doi.org/10.1300/J184v04n01_10
Barabasz, A. F., & Barabasz, M. (1999). Treating ADHD with hypnosis and neurotherapy. Paper presented at the 1999 Annual Convention of the American Psychological Association. Boston, MA. https://files.eric.ed.gov/fulltext/ED435076.pdf
Barbero, Á., & Grosse-Wentrup, M. (2010). Biased feedback in brain-computer interfaces. Journal of NeuroEngineering and Rehabilitation, 7, Article 34. https://doi.org/10.1186/1743-0003-7-34
Birbaumer, N., Ruiz, S., & Sitaram, R. (2013). Learned regulation of brain metabolism. Trends in Cognitive Sciences, 17(6), 295–302. https://doi.org/10.1016/j.tics.2013.04.009
Boddy, J., Carver, A., & Rowley, K. (1986). Effects of positive and negative verbal reinforcement on performance as a function of extraversion-introversion: Some tests of Gray's theory. Personality and Individual Differences, 7(1), 81–88. https://doi.org/10.1016/0191-8869(86)90111-X
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815–834. https://doi.org/10.1016/j.neuron.2010.11.022
Chafee, M. V., & Crowe, D. A. (2017). Implicit and explicit learning mechanisms meet in monkey prefrontal cortex. Neuron, 96(2), 256–258. https://doi.org/10.1016/j.neuron.2017.09.049
Chib, V. S., De Martino, B., Shimojo, S., & O'Doherty, J. P. (2012). Neural mechanisms underlying paradoxical performance for monetary incentives are driven by loss aversion. Neuron, 74(3), 582–594. https://doi.org/10.1016/j.neuron.2012.02.038
Clemente, C. D., Sterman, M. B., & Wyrwicka, W. (1964). Post-reinforcement EEG synchronization during alimentary behavior. Electroencephalography and Clinical Neurophysiology, 16(4), 355–365. https://doi.org/10.1016/0013-4694(64)90069-0
Cohen Kadosh, K., & Staunton, G. (2019). A systematic review of the psychological factors that influence neurofeedback learning outcomes. NeuroImage, 185, 545–555, https://doi.org/10.1016/j.neuroimage.2018.10.021
Collura, T. F. (2014). Technical foundations of neurofeedback (pp. 16–17). Routledge.
Curran, E. A., & Stokes, M. J. (2003). Learning to control brain activity: A review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain and Cognition, 51(3), 326–336. https://doi.org/10.1016/S0278-2626(03)00036-8
Daffertshofer, A., & van Wijk, B. C. M. (2011). On the influence of amplitude on the connectivity between phases. Frontiers in Neuroinformatics, 5, 6. https://doi.org/10.3389/fninf.2011.00006
Davelaar, E. J. (2017). A computational approach to developing cost-efficient adaptive-threshold algorithms for EEG neuro feedback. International Journal of Structural and Computational Biology, 1(2), 1–4. https://eprints.bbk.ac.uk/id/eprint/21537/1/21537.pdf
Davelaar, E. J. (2018). Mechanisms of neurofeedback: A computation-theoretic approach. Neuroscience, 378, 175–188. https://doi.org/10.1016/j.neuroscience.2017.05.052
Egner, T., Zech, T. F., & Gruzelier, J. H. (2004). The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology, 115(11), 2452–2460. https://doi.org/10.1016/j.clinph.2004.05.033
Elliott, R., Agnew, Z., & Deakin, J. F. W. (2010). Hedonic and informational functions of the human orbitofrontal cortex. Cerebral Cortex, 20(1), 198–204. https://doi.org/10.1093/cercor/bhp092
Emmert, K., Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E. J., Horovitz, S. G., Breimhorst, M., Caria, A., Frank, S., Johnston, S., Long, Z., Paret., C., Robineau, F., Veit, R., Bartsch, A., Beckmann, C. F., Van De Ville, D., & Haller, S. (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage, 124(Part A), 806–812. https://doi.org/10.1016/j.neuroimage.2015.09.042
Evans, J. J., Wilson, B. A., Schuri, U., Andrade, J., Baddeley, A., Bruna, O., Canavan, T., Del Sala, S., Green, R., Laaksonen, R., Lorenzi, L., & Taussik, I. (2000). A comparison of ''errorless'' and ''trial-and-error'' learning methods for teaching individuals with acquired memory deficits. Neuropsychological Rehabilitation, 10(1), 67–101. https://doi.org/10.1080/096020100389309
Fehmi, L. G., & Robbins, J. (2008). The open-focus brain: harnessing the power of attention to heal mind and body (pp. 29–40). Boulder, CO: Shambhala Publications.
Fisher, S. F. (2014). Neurofeedback in the treatment of developmental trauma: Calming the fear-driven brain (pp. 277–324). W.W. Norton & Company.
Frank, M., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47(4), 495–501. https://doi.org/10.1016/j.neuron.2005.06.020
Gastaldi, F. (2023, February). Neurofeedback, tutto sulla tecnica scelta da Marco Mengoni per liberarsi dallo stress. Vanity Fair. https://www.vanityfair.it/article/neurofeedback-come-funziona-tecnica-marco-mengoni-anti-stress
Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience & Biobehavioral Reviews, 44, 159–182. https://doi.org/10.1016/j.neubiorev.2014.03.015
Hardt, J. V., & Kamiya, J. (1976). Conflicting results in EEG alpha feedback studies. Biofeedback and Self-Regulation, 1(1), 63–75. https://doi.org/10.1007/BF00998691
Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A., & Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer's, Huntington's, and Parkinson's disease patients. The Journal of Neuroscience, 9(2), 582–587. https://doi.org/10.1523/JNEUROSCI.09-02-00582.1989
Johnson, M. L., & Bodenhamer-Davis, E. (2009). QEEG-based protocol selection: A study of level of agreement on sites, sequences, and rationales among a group of experienced QEEG-based neurofeedback practitioners. Journal of Neurotherapy, 13(1), 41–66. https://doi.org/10.1080/10874200802668416
Klöbl, M., Michenthaler, P., Godbersen, G. M., Robinson, S., Hahn, A., & Lanzenberger, R. (2020). Reinforcement and punishment shape the learning dynamics in fMRI neurofeedback. Frontiers in Human Neuroscience, 14, 304. https://doi.org/10.3389/fnhum.2020.00304
Knox, S. S. (1980). Distribution of ‘criterion’ alpha in the resting EEG: Further argument against the use of an amplitude threshold in alpha biofeedback training. Biological Psychology, 11(1), 1–6. https://doi.org/10.1016/0301-0511(80)90021-6
Kober, S. E., Witte, M., Ninaus, M., Neuper, C., & Wood, G. (2013). Learning to modulate one's own brain activity: The effect of spontaneous mental strategies. Frontiers in Human Neuroscience, 7, 695. https://doi.org/10.3389/fnhum.2013.00695
Koralek, A. C., Jin, X., Long II, J. D., Costa, R. M., & Carmena, J. M. (2012). Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature, 483(7389), 331–335. https://doi.org/10.1038/nature10845
Lam, S.-L., Criaud, M., Alegria, A., Barker, G. J., Giampietro, V., & Rubia, K. (2020). Neurofunctional and behavioural measures associated with fMRI-neurofeedback learning in adolescents with Attention-Deficit/Hyperactivity Disorder. NeuroImage Clinical, 27, 102291. https://doi.org/10.1016/j.nicl.2020.102291
Lansbergen, M. M., van Dongen-Boomsma, M., Buitelaar, J. K., & Slaats-Willemse, D. (2011). ADHD and EEG-neurofeedback: A double-blind randomized placebo-controlled feasibility study. Journal of Neural Transmission, 118, 275–284. https://doi.org/10.1007/s00702-010-0524-2
Lin, J. J., Mamykina, L., Lindtner, S., Delajoux, G., & Strub, H. B. (2006). Fish’n’Steps: Encouraging physical activity with an interactive computer game. In P. Dourish, & A. Friday (Eds.), UbiComp 2006: Ubiquitous computing. Lecture Notes in Computer Science, vol. 4206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11853565_16
Logemann, H. N. A., Lansbergen, M. M., Van Os, T. W. D. P., Böcker, K. B. E., & Kenemans, J. L. (2010). The effectiveness of EEG-feedback on attention, impulsivity and EEG: A sham feedback controlled study. Neuroscience Letters, 479(1), 49–53. https://doi.org/10.1016/j.neulet.2010.05.026
Loonis, R. F., Brincat, S. L., Antzoulatos, E. G., & Miller, E. K. (2017). A meta-analysis suggests different neural correlates for implicit and explicit learning. Neuron, 96(2), 521–534.e7. https://doi.org/10.1016/j.neuron.2017.09.032
Marczynski, T. J., Harris, C. M., & Livezey, G. T. (1981). The magnitude of post-reinforcement EEG synchronization (PRS) in cats reflects learning ability. Brain Research, 204(1), 214–219. https://doi.org/10.1016/0006-8993(81)90667-3
Maxwell, J. P., Masters, R. S. W., Kerr, E., & Weedon, E. (2001). The implicit benefit of learning without errors. The Quarterly Journal of Experimental Psychology: A Human Experimental Psychology, 54A(4), 1049–1068. https://doi.org/10.1080%2F713756014
Mobbs, D., Hassabis, D., Seymour, B., Marchant, J. L., Weiskopf, N., Dolan, R. J., & Frith, C. D. (2009). Choking on the money: Reward-based performance decrements are associated with midbrain activity. Psychology Science, 20(8), 955–962. https://doi.org/10.1111/j.1467-9280.2009.02399.x
Mohammadi, H. S., Pirbabaei, E., Sisi, M. J., & Sekhavat, Y. A. (2018). ExerBrain: A comparison of positive and negative reinforcement in attention training using BCI based computer games. In 2018 2nd National and 1st International Digital Games Research Conference: Trends, Technologies, and Applications (DGRC), 11, 167–171. Tehran, Iran. https://doi.org/10.1109/DGRC.2018.8712048.
Nam, S., & Choi, S. (2020). Effect of threshold setting on neurofeedback training. NeuroRegulation, 7(3), 107–117. https://doi.org/10.15540/nr.7.3.107
Nijboer, F., Birbaumer, N., & Kübler, A. (2010). The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study. Frontiers in Neuropharmacology, 4, 55. https://doi.org/10.3389/fnins.2010.00055
Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. https://doi.org/10.1016/j.paid.2012.11.037
Oblak, E. F., Sulzer, J. S., & Lewis-Peacock, J. A. (2019). A simulation-based approach to improve decoded neurofeedback performance. NeuroImage, 195, 300–310. https://doi.org/10.1016/j.neuroimage.2019.03.062
O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95–102. https://doi.org/10.1038/82959
Othmer, S. (2009). In J. R. Evans, T. H. Budzynski, H. K. Budzynski, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (pp. 3–26). Academic Press.
Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Moyano, J. C., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550. https://doi.org/10.1038/35107080
Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24(3), 362–378. https://doi.org/10.1016/j.humov.2005.06.006
Radua, J., Stoica, T., Scheinost, D., Pittenger, C., & Hampson, M. (2018). Neural correlates of success and failure signals during neurofeedback learning. Neuroscience, 378, 11–21. https://doi.org/10.1016/j.neuroscience.2016.04.003
Ramot, M., Grossman, S., Friedman, D., & Malach, R. (2016). Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. PNAS Proceedings of the National Academy of Sciences of the United States of America, 113(17), E2413–E2420. https://doi.org/10.1073/pnas.1516857113
Reinschluessel, A. V., & Mandryk, R. L. (2016). Using positive or negative reinforcement in neurofeedback games for training self-regulation. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play (pp. 186–198). https://doi.org/10.1145/2967934.2968085
Rogala, J., Jurewicz, K., Paluch, K., Kublik, E., Cetnarski, R., & Wróbel, A. (2016). The do's and don'ts of neurofeedback training: A review of the controlled studies using healthy adults. Frontiers in Human Neuroscience, 10, 301. https://doi.org/10.3389/fnhum.2016.00301
Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10(1), Article 87. https://doi.org/10.1186/1471-2202-10-87
Ros, T., Frewen, P., Théberge, J., Michela, A., Kluetsch, R., Mueller, A., Candrian, G., Jetly, R., Vuilleumier, P., & Lanius, R. A. (2017). Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cerebral Cortex, 27(10), 4911–4922. https://doi.org/10.1093/cercor/bhw285
Sasaki, Y., Nanez, J. & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60. https://doi.org/10.1038/nrn2737
Schafer, R. J., & Moore, T. (2011). Selective attention from voluntary control of neurons in prefrontal cortex. Science, 332(6037), 1568–1571. https://doi.org/10.1126/science.1199892
Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy, 15(4), 292–304. https://doi.org/10.1080/10874208.2011.623089
Shibata, K., Yamagishi, N., Ishii, S., & Kawato, M. (2009). Boosting perceptual learning by fake feedback. Vision Research, 49(21), 2574–2585. https://doi.org/10.1016/j.visres.2009.06.009
Shourie, N., Firoozabadi, M., & Badie, K. (2018). Fuzzy adaptive neurofeedback training: An efficient neurofeedback training procedure providing a more accurate progress rate for trainee. Biomedical Signal Processing and Control, 44, 75–81. https://doi.org/10.1016/j.bspc.2018.02.009
Siniatchkin, M., Kropp, P., & Gerber, W.-D. (2000). Neurofeedback–The significance of reinforcement and the search for an appropriate strategy for the success of self-regulation. Applied Psychophysiology and Biofeedback 25(3), 167–175. https://doi.org/10.1023/A:1009502808906
Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N., & Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. https://doi.org/10.1038/nrn.2016.164
Skinner, B. F. (1945). The operational analysis of psychological terms. Psychological Review, 52(5), 270–277. https://doi.org/10.1037/h0062535
Skottnik, L., Sorger, B., Kamp, T., Linden, D., & Goebel, R. (2019). Success and failure of controlling the real‐time functional magnetic resonance imaging neurofeedback signal are reflected in the striatum. Brain and Behavior, 9(3), Article e01240. https://doi.org/10.1002/brb3.1240
Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35. https://doi.org/10.1007/s10484-006-9002-x
Sterman, M. B., Mann, C. A., & Kaiser, D. A. (1993, February). Quantitative EEG patterns of differential in-flight workload. In NASA. Johnson Space Center, Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), Volume 2.
Strehl, U. (2014). What learning theories can teach us in designing neurofeedback treatments. Frontiers in Human Neuroscience, 8, 894. https://doi.org/10.3389/fnhum.2014.00894
Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan, K. E., Luft, A., & Gassert, R. (2013). Neurofeedbackmediated self-regulation of the dopaminergic midbrain. NeuroImage, 83, 817–825. https://doi.org/10.1016/j.neuroimage.2013.05.115
Thompson, L., & Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD. Applied Psychophysiology and Biofeedback, 23(4), 243–263. https://doi.org/10.1023/A:1022213731956
Thorndike, E. L. (1999). Animal intelligence (p. v). Bristol, UK: Thoemmes. (Original work published 1911).
Tsushima, Y., Seitz, A. R., & Watanabe, T. (2008). Task-irrelevant learning occurs only when the irrelevant feature is weak. Current Biology, 18(12), R516–R517. https://doi.org/10.1016/j.cub.2008.04.029
Van der Kolk, B. (2014). The body keeps the score: Brain, mind, and body in the healing of trauma (pp. 309–329). Penguin Publishing Group.
Van Doren, J., Heinrich, H., Bezold, M., Reuter, N., Kratz, O., Horndasch, S., Berking, M., Ros, T., Gevensleben, H., Moll, G. H., & Studer, P. (2017). Theta/beta neurofeedback in children with ADHD: Feasibility of a short-term setting and plasticity effects. International Journal of Psychophysiology, 112, 80–88. https://doi.org/10.1016/j.ijpsycho.2016.11.004
Vernon, D., Dempster, T., Bazanova, O. M., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214–227. https://doi.org/10.1080/10874200903334397
Wächter, T., Lungu, O. V., Liu, T., Willingham, D. T., & Ashe, J. (2009). Differential effect of reward and punishment on procedural learning. Journal of Neuroscience, 29(2), 436–443. https://doi.org/10.1523/JNEUROSCI.4132-08.2009
White, N. E., & Richards, L. M. (2009). Alpha–theta neurotherapy and the neurobehavioral treatment of addictions, mood disorders and trauma. In J. R. Evans, T. H. Budzynski, H. K. Budzynski, & A. Abarbanel (Eds.). Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (pp. 143–164). Academic Press.
Zuberer, A., Brandeis, D., & Drechsler, R. (2015). Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity. Frontiers in Human Neuroscience, 9, 135. https://doi.org/10.3389/fnhum.2015.00135
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Revital Yonah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).