Proceedings of the 2021 ISNR Annual Conference (Virtual): Poster Presentations
DOI:
https://doi.org/10.15540/nr.8.4.220Keywords:
NeuroRegulation, Neurofeedback, QEEG, brain health, ISNR Annual ConferenceAbstract
Selected Poster session Abstracts of Conference Presentations at the 2021 International Society for NeuroRegulation and Research (ISNR) 29th Conference, Miami, Florida, USA
References
--Using Standardized Weighted Low-Resolution Electromagnetic Tomography (swLORETA) to Analyze the Deep Brain Activity for Healthy Adults and Patients with Major Depressive Disorder
Begić, D., Popović-Knapić, V., Grubišin, J., Kosanović-Rajačić, B., Filipčić, I., Telarović, I., & Jakovljević, M. (2011). Quantitative electroencephalography in schizophrenia and depression. Psychiatria Danubina, 23(4), 355–362.
Herrington, J. D., Heller, W., Mohanty, A., Engels, A. S., Banich, M. T., Webb, A. G., & Miller, G. A. (2010). Localization of asymmetric brain function in emotion and depression. Psychophysiology, 47(3), 442–454. https://doi.org/10.1111/j.1469-8986.2009.00958.x
Koberda, J. L. (2014). Z-score LORETA neurofeedback as a potential therapy in depression/anxiety and cognitive dysfunction. In R. W. Thatcher & J. F. Lubar (Eds.), Z score neurofeedback: Clinical applications (1st ed., pp. 93–113). Academic Press.
Koo, P. C., Thome, J., Berger, C., Foley, P., & Hoeppner, J. (2017). Current source density analysis of resting state EEG in depression: A review. Journal of Neural Transmission, 124(1), 109–118. https://doi.org/10.1007/s00702-015-1432-2
Korb, A. S., Cook, I. A., Hunter, A. M., & Leuchter, A. F. (2008). Brain electrical source differences between depressed subjects and healthy controls. Brain Topography, 21(2), 138–146. https://doi.org/10.1007/s10548-008-0070-5
Lubar, J. F., Congedo, M., & Askew, J. H. (2003). Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. International Journal of Psychophysiology, 49(3), 175–185. https://doi.org/10.1016/S0167-8760(03)00115-6
Mayberg, H. S. (2003). Modulating dysfunctional limbic-cortical circuits in depression: Towards development of brain-based algorithms for diagnosis and optimized treatment. British Medical Bulletin, 65(1), 193–207. https://doi.org/10.1093/bmb/65.1.193
Mientus, S., Gallinat, J., Wuebben, Y., Pascual-Marqui, R. D., Mulert, C., Frick, K., Dorn, H., Herrmann, W. M., & Winterer, G. (2002). Cortical hypoactivation during resting EEG in schizophrenics but not in depressives and schizotypal subjects as revealed by low resolution electromagnetic tomography (LORETA). Psychiatry Research: Neuroimaging, 116(1–2), 95–111. https://doi.org/10.1016/S0925-4927(02)00043-4
Palmero-Soler, E., Dolan, K., Hadamschek, V., & Tass, P. A. (2007). swLORETA: A novel approach to robust source localization and synchronization tomography. Physics in Medicine and Biology, 52(7), 1783–1800. https://doi.org/10.1088/0031-9155/52/7/002
Pizzagalli, D. A., Nitschke, J. B., Oakes, T. R., Hendrick, A. M., Horras, K. A., Larson, C. L., Abercrombie, H. C., Schaefer, S. M., Koger, J. V., Benca, R. M., Pascual-Marqui, R. D., & Davidson, R. J. (2002). Brain electrical tomography in depression: The importance of symptom severity, anxiety, and melancholic features. Biological Psychiatry, 52(2), 73–85. https://doi.org/10.1016/S0006-3223(02)01313-6
--Frontal EEG Indices of Attentional Bias and Involuntary Orienting to Pictorial Drug-related Cues in Cocaine Addiction
Carter, B. L., & Tiffany, S. T. (1999). Meta-analysis of cue-reactivity in addiction research. Addiction, 94, 327–340.
Cox, W. M., Fadardi, J. S., & Pothos, E. M. (2006). The Addiction-Stroop Test: Theoretical considerations and procedural recommendations. Psychological Bulletin, 132(3), 443–476. https://doi.org/10.1037/0033-2909.132.3.443
Franken, I. H. (2003). Drug craving and addiction: Integrating psychological and neuropsychopharmacological approaches. Progress in Neuro-psychopharmacology and Biological Psychiatry, 27(4), 563–579. https://doi.org/10.1016/S0278-5846(03)00081-2
Hester, R., Dixon, V., & Garavan, H. (2006). A consistent attentional bias for drug-related material in active cocaine users across word and picture versions of the emotional Stroop task. Drug and Alcohol Dependence, 81(3), 251–257. https://doi.org/10.1016/j.drugalcdep.2005.07.002
Horrell, T., El-Baz, A., Baruth, J., Tasman, A., Sokhadze, G., Stewart, C., & Sokhadze, E. (2010). Neurofeedback effects on evoked and induced EEG gamma band reactivity to drug-related cues in cocaine addiction. Journal of Neurotherapy, 14(3), 195–216. https://doi.org/10.1080/10874208.2010.501498
Lubman, D. I., Peters, L. A., Mogg, K., Bradley, B. P., & Deakin, J. F. (2000). Attentional bias for drug cues in opiate dependence. Psychological Medicine, 30(1), 169–175. https://doi.org/10.1017/s0033291799001269
Robinson, T. E., & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103–114. https://doi.org/10.1046/j.1360-0443.2001.9611038.x
Sokhadze, E., Singh, S., Stewart, C., Hollifield, M., El-Baz, A., & Tasman, A. (2008). Attentional bias to drug- and stress-related pictorial cues in cocaine addiction comorbid with Posttraumatic Stress Disorder. Journal of Neurotherapy, 12(4), 205–225. https://doi.org/10.1080/10874200802502185
--Evaluations of Algorithmic Models for Estimations of Current Source Destiny and Electrophysiological Substrates According to LORETA and swLORETA Analyses
Gomez, J. F., & Thatcher, R. W. (2001). Frequency domain equivalence between potentials and currents using LORETA. International Journal of Neuroscience, 107(3–4), 161–171. https://doi.org/10.3109/00207450109150683
Hassan, M., Dufor, O., Merlet, I., Berrou, C., & Wendling, F. (2014). EEG source connectivity analysis: From dense array recordings to brain networks. PLoS ONE, 9(8), e105041. https://doi.org/10.1371/journal.pone.0105041
Henson, R. N., Wakeman, D. G., Litvak, V., & Friston, K. J. (2011). A parametric empirical Bayesian framework for the EEG/MEG Inverse Problem: Generative models for multi-subject and multi-modal integration. Frontiers in Human Neuroscience, 5, 76. https://doi.org/10.3389/fnhum.2011.00076
Lei, X., Wu, T., & Valdes-Sosa, P. A. (2015). Incorporating priors for EEG source imaging and connectivity analysis. Frontiers in Neuroscience, 9, 284. https://doi.org/10.3389/fnins.2015.00284
Mahjoory, K., Nikulin, V. V., Botrel, L., Linkenkaer-Hansen, K., Fato, M. M., & Haufe, S. (2017). Consistency of EEG source localization and connectivity estimates. NeuroImage, 152, 590–601. https://doi.org/10.1101/071597
Nunez, P., & Srinivasan, R. (2006). Electric fields and currents in biological tissue. In Electric Fields of the Brain: The Neurophysics of EEG (2nd ed., pp. 147–202). New York, NY: Oxford University Press.
Nunez, M. D., Nunez, P. L., & Srinivasan, R. (2016). Electroencephalography (EEG): Neurophysics, experimental methods, and signal processing. In H. Ombao, M. Linquist, W. Thompson, & J. Aston (Eds.) Handbook of neuroimaging data analysis (pp. 175–197). Chapman & Hall/CRC. Advance online publication. https://doi.org/10.13140/rg.2.2.12706.63687
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65. https://doi.org/10.1016/0167-8760(84)90014-x
Pascual-Marqui, R. D., Faber, P. L., Kinoshita, T., Kochi, K., Milz, P., Nishida, K., & Yoshimura, M. (2018). Comparing EEG/MEG neuroimaging methods based on localization error, false positive activity, and false positive connectivity. bioRxiv, 269753. https://doi.org/10.1101/269753
Wagner, M., Fuchs, M., & Kastner, J. (2004). Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topography, 16(4), 277–280. https://doi.org/10.1023/b:brat.0000032865.58382.62
--Psychophysiological Indices of Attentional Bias Towards Drug-related Pictures in Visual Cue Reactivity Test in Individuals with Opiate Use Disorder Enrolled in Buprenorphine- Maintenance Program
Blau, M. (2017). STAT forecast: Opioids could kill nearly 500,000 Americans in the next decade. https://www.statnews.com/2017/06/27/opioid-deaths-forecast/
Carter, B. L., & Tiffany, S. T. (1999). Meta-analysis of cue-reactivity in addiction research. Addiction, 94(3), 327–340.
Fatseas, M., Denis, C., Massida, Z., Verger, M., Franques-Rénéric, P., & Auriacombe, M. (2011). Cue-induced reactivity, cortisol response and substance use outcome in treated heroin dependent individuals. Biological Psychiatry, 70(8), 720–727. https://doi.org/10.1016/j.biopsych.2011.05.015
Hadland, S. E., Bagley, S. M., Rodean, J., Silverstein, M., Levy, S., Larochelle, M. R., Samet, J. H., & Zima, B. T. (2018). Receipt of timely addiction treatment and association of early medication treatment with retention in care among youths with opioid use disorder. JAMA Pediatrics, 172(11), 1029–1037. https://doi.org/10.1001/jamapediatrics.2018.2143
Hyman, S. E. (2005). Addiction: A disease of learning and memory. The American Journal of Psychiatry, 162(8), 1414–1422. https://doi.org/10.1176/appi.ajp.162.8.1414
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2001) International Affective Picture System (IAPS): Instruction manual and affective ratings. Gainesville, FL: The Center for Research in Psychophysiology, University of Florida.
O'Donnell, J. K., Gladden, R. M., & Seth, P. (2017). Trends in deaths involving heroin and synthetic opioids excluding methadone, and law enforcement drug product reports, by census region – United States, 2006–2015. MMWR Morbidity and Mortality Weekly Report, 66(34), 897–903. https://doi.org/10.15585/mmwr.mm6634a2
Robinson, T. E., & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103–114. https://doi.org/10.1046/j.1360-0443.2001.9611038.x
--Navigating Virtual Neurofeedback Treatment During COVID-19: A Retrospective Analysis
American Counseling Association. (2014). 2014 ACA code of ethics. https://www.counseling.org/docs/default-source/default-document-library/2014-code-of-ethics-finaladdress.pdf
Demos, J. N. (2005). Getting started with neurofeedback. W.W. Norton.
Executive Office of the President. (2020). Proclamation 9994: Declaring a national emergency concerning the novel coronavirus disease (COVID19) outbreak. Federal Registrar, 15337–15338. https://www.federalregister.gov/documents/2020/03/18/2020-05794/declaring-a-national-emergency-concerning-the-novel-coronavirus-disease-covid-19-outbreak
Gregory, J. C., Romero, D. E., & Jones, M. S. (2020). Predictors of neurofeedback outcomes following qEEG individualized protocols for anxiety. NeuroRegulation, 7(1), 18–25. https://doi.org/10.15540/nr.7.1.18
Hernández, E. D., Marqués, J. G., & Alvarado, J. M. (2016). Effect of the theta-beta neurofeedback protocol as a function of subtype in children diagnosed with attention deficit hyperactivity disorder. The Spanish Journal of Psychology, 19, E30. https://doi.org/10.1017/sjp.2016.31
Jones, M. S., & Hitsman, H. (2018). QEEG-guided neurofeedback treatment for anxiety symptoms. NeuroRegulation, 5(3), 85–92. https://doi.org/10.15540/nr.5.3.85
Mennella, R., Patron, E., & Palomba, D. (2017). Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety. Behaviour Research and Therapy, 92(1), 32–40. https://doi.org/10.1016/j.brat.2017.02.002
Murphy, L., Eduljee, N. B., & Croteau, K. (2020). College student transition to synchronous virtual classes during the COVID-19 pandemic in northeastern United States. Pedagogical Research, 5(4). https://doi.org/10.29333/pr/8485
Romero, D. E., Anderson, A., Gregory, J. C., Potts, C. A., Jackson, A., Spears, J. R., Jones, M. S., & Speedlin, S. (2020). Using neurofeedback to lower PTSD symptoms. NeuroRegulation, 7(3), 99–106. https://doi.org/10.15540/nr.7.3.99
van Son, D., van der Does, W., Band, G. P. H., & Putman, P. (2020). EEG theta/beta ratio neurofeedback training in healthy females. Applied Psychophysiology and Biofeedback, 45, 195–210. https://doi.org/10.1007/s10484-020-09472-1
--Neurofeedback and Trauma
Dondanville, K. A., Borah, E. V., Bottera, A. R., & Molino, A. T. (2018). Reducing stigma in PTSD treatment seeking among service members: Pilot intervention for military leaders. Best Practices in Mental Health, 14(1), 15–26.
Feng, P., Becker, B., Feng, T., & Zheng, Y. (2018). Alter spontaneous activity in amygdala and vmPFC during fear consolidation following 24 h sleep deprivation. NeuroImage, 172, 461–469. https://doi.org/10.1016/j.neuroimage.2018.01.057
Fisher, S. F., Lanius, R. A., & Frewen, P. A. (2016). EEG neurofeedback as adjunct to psychotherapy for complex developmental trauma-related disorders: Case study and treatment rationale. Traumatology, 22(4), 255–260. https://doi.org/10.1037/trm0000073
Gapen, M., van der Kolk, B. A., Hamlin, E., Hirshberg, L., Suvak, M., & Spinazzola, J. (2016). A pilot study of neurofeedback for chronic PTSD. Applied Psychophysiology and Biofeedback, 41, 251–261. https://doi.org/10.1007/s10484-015-9326-5
Meiser-Stedman, R., McKinnon, A., Dixon, C., Boyle, A., Smith, P., & Dalgleish, T. (2017). Acute stress disorder and the transition to posttraumatic stress disorder in children and adolescents: Prevalence, course, prognosis, diagnostic suitability, and risk markers. Depression and Anxiety, 34(4), 348–355. https://doi.org/10.1002/da.22602
Peniston, E. G., & Kulkosky, P. J. (1991). Alpha-theta brainwave neuro-feedback for Vietnam veterans with combat-related post-traumatic stress disorder. Medical Psychotherapy, 4, 47–60.
Perry, B. D. (2008). Child maltreatment: A neurodevelopmental perspective on the role of trauma and neglect in psychopathology. In T. Beauchaine, & S. P. Hinshaw (Eds.), Child and adolescent psychopathology (pp. 93–129). John Wiley & Sons.
Rogala, J., Jurewicz, K., Paluch, K., Kublik, E., Cetnarski, R., & Wróbel, A. (2016). The do's and don'ts of neurofeedback training: A review of the controlled studies using healthy adults. Frontiers in Human Neuroscience, 10, 301. https://doi.org/10.3389/fnhum.2016.00301
van der Kolk, B., Ford, J. D., & Spinazzola, J. (2019). Comorbidity of developmental trauma disorder (DTD) and post-traumatic stress disorder: Findings from the DTD field trial. European Journal of Psychotraumatology, 10(1). https://doi.org/10.1080/20008198.2018.1562841
van der Kolk, B. A., Hodgdon, H., Gapen, M., Musicaro, R., Suvak, M. K., Hamlin, E., & Spinazzola, J. (2016). A randomized controlled study of neurofeedback for chronic PTSD. PLoS ONE, 11(12). https://doi.org/10.1371/journal.pone.0166752
--Improving Mental Health Through Z-score LORETA Neurofeedback During a Pandemic
Drobnjak, S. (2013). Brief Symptom Inventory. In M. D. Gellman & J. R. Turner (Eds.), Encyclopedia of behavioral medicine (pp. 269–270). New York, NY: Springer. https://doi.org/10.1007/978-1-4419-1005-9_3
Duric, N. S., Assmus, J., Gundersen, D., & Elgen, I. B. (2012). Neurofeedback for the treatment of children and adolescents with ADHD: A randomized and controlled clinical trial using parental reports. BMC Psychiatry, 12, 107. https://doi.org/10.1186/1471-244X-12-107
Evans, J. R., Dellinger, M. B., & Russell, H. L. (2020). Neurofeedback: The first fifty years. Academic Press.
Koberda, J. L. (2015) LORETA Z-score neurofeedback-effectiveness in rehabilitation of patients suffering from traumatic brain injury. Journal of Neurology and Neurobiology, 1(4). https://doi.org/10.16966/2379-7150.113
Koberda, J. L., Koberda, P., Moses, A., Winslow, J., Bienkiewicz, A., & Koberda, L. (2014). Z-Score LORETA neurofeedback as a potential therapy for ADHD. Biofeedback, 42(2), 74–81. https://doi.org/10.5298/1081-5937-42.2.05
Thatcher, R. W. (2013). Latest developments in live Z-score training: Symptom check list, phase reset, and LORETA Z-score biofeedback. Journal of Neurotherapy, 17(1), 69–87. https://doi.org/10.1080/10874208.2013.759032
Thatcher, R. W., Lubar, J. F. (2015). Z score neurofeedback: Clinical applications. Academic Press.
Thatcher, R. W., North, D., & Biver, C. (2005). Evaluation and validity of a LORETA normative EEG database. Clinical EEG and Neuroscience, 36(2), 116–122 https://doi.org/10.1177/155005940503600211
Thatcher, R. W., Walker, B. A., Biver, C. J., North, M. A., & Curtin, R. (2003). Sensitivity and specificity of an EEG database, validation and clinical correlation. Journal of Neurotherapy, 7(3/4), 87–121.
Wigton, N. L. (2013). Clinical perspectives of 19-channel Z-score neurofeedback: Benefits and limitations. Journal of Neurotherapy, 17(4), 259–264. https://doi.org/10.1080/10874208.2013.847142
Wigton, N., & Krigbaum, G. (2015). A review of qEEG-guided neurofeedback. NeuroRegulation, 2(3), 149–155. https://doi.org/10.15540/nr.2.3.149
--Comparing the EEG Patterns Between Patients with Major Depressive Disorder and Healthy Adults Through a Normalized Database in Taiwan
Coutin-Churchman, P., Añez, Y., Uzcátegui, M., Alvarez, L., Vergara, F., Mendez, L., & Fleitas, R. (2003). Quantitative spectral analysis of EEG in psychiatry revisited: Drawing signs out of numbers in a clinical setting. Clinical Neurophysiology, 114(12), 2294–2306. https://doi.org/10.1016/S1388-2457(03)00228-1
Fingelkurts, A. A., Fingelkurts, A. A., Rytsälä, H., Suominen, K., Isometsä, E., & Kähkönen, S. (2006). Composition of brain oscillations in ongoing EEG during major depression disorder. Neuroscience Research, 56(2), 133–144. https://doi.org/10.1016/j.neures.2006.06.006
Grin-Yatsenko, V. A., Baas, I., Ponomarev, V. A., & Kropotov, J. D. (2009). EEG power spectra at early stages of depressive disorders. Journal of Clinical Neurophysiology, 26(6), 401–406. https://doi.org/10.1097/WNP.0b013e3181c298fe
Johnstone, J., & Gunkelman, J. (2003). Use of databases in QEEG evaluation. Journal of Neurotherapy, 7(3–4), 31–52. https://doi.org/10.1300/J184v07n03_02
Lee, T. W., Yu, Y. W.-Y., Chen, M.-C., & Chen, T.-J. (2011). Cortical mechanisms of the symptomatology in major depressive disorder: A resting EEG study. Journal of Affective Disorders, 131(1–3), 243–250. https://doi.org/10.1016/j.jad.2010.12.015
Lin, I.-M., Chen, T.-C., Lin, H.-Y., Wang, S.-Y., Sung, J.-L., & Yen, C.-W. (2021). Electroencephalogram patterns in patients comorbid with major depressive disorder and anxiety symptoms: Proposing a hypothesis based on hypercortical arousal and not frontal or parietal alpha asymmetry. Journal of Affective Disorders, 282, 945–952. https://doi.org/10.1016/j.jad.2021.01.001
Lorensen, T. D., & Gow, K. M. (2003). Quantitative electroencephalographic comodulation: An investigation of patterns in chronic fatigue syndrome. Journal of Neurotherapy, 7(1), 3–18. https://doi.org/10.1300/J184v07n01_02
Newson, J. J. & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: A review of resting state studies. Frontiers in Human Neuroscience, 12, 521. https://doi.org/10.3389/fnhum.2018.00521
Prichep, L. S. (2005). Use of normative databases and statistical methods in demonstrating clinical utility of QEEG: Importance and cautions. Clinical EEG and Neuroscience, 36(2), 82–87. https://doi.org/10.1177/155005940503600207
Thatcher, R. W., & Lubar, J. F. (2009). History of the scientific standards of QEEG normative databases. In T. H. Budzynski, H. K. Budzynski, J. R. Evans, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (pp. 29–59). Academic Press. https://doi.org/10.1016/B978-0-12-374534-7.00002-2
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).