COVID-19 and the Brain: Infection Mechanisms, Electroencephalographic Findings and Clinical Implications
DOI:
https://doi.org/10.15540/nr.9.1.48Keywords:
COVID-19, long-COVID, electroencephalogram, neurofeedback, neuromodulationAbstract
The term long-COVID refers to a wide array of psychological impacts arising from infection with the Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2). The virus has been reported to attack the nervous system directly, with nondirect impacts to organs and systems, such as elevated inflammation, blood pressure, and immune responses also damaging the brain. The electroencephalogram (EEG) has been used to image these insults and provides a valuable tool to guide understanding of infection mechanisms and, consequentially, therapeutic intervention. Due to the high likelihood of neurological complications, neurofeedback and other forms of neuromodulation may be particularly well suited to help long-COVID patients recover. However, clinicians providing neuromodulation interventions should be aware of, and take adequate steps to minimize, risks to themselves and others in providing face-to-face services. This review seeks to provide mental health professionals with an overview of the impacts of COVID-19 upon the nervous system, details current EEG findings, and outlines possibly relevant neurofeedback and neuromodulation interventions.
References
Abdo, W. F., Broerse, C. I., Grady, B. P., Wertenbroek, A. A. A. C. M., Vijlbrief, O., Buise, M. P., Beukema, M., van der Kuil, M., Tuladhar, A. M., Meijer, F. J. A., & van der Hoeven, J. G. (2021). Prolonged unconsciousness following severe COVID-19. Neurology, 96(10), 1437–1442. https://doi.org/10.1212/WNL.0000000000011355
Agorastos, A., Kellner, M., Baker, D. G., & Stiedl, O. (2015). Diminished Vagal and/or Increased Sympathetic Activity in Post-Traumatic Stress Disorder. In C. R. Martin, V. R. Preedy, & V. B. Patel (Eds.), Comprehensive guide to post-traumatic stress disorder (pp.1–15). Springer. https://doi.org/10.1007/978-3-319-08613-2_30-1
Ardell, J. L. (2001). Neurohumoral control of cardiac function. In N. Sperelakis, Y. Kurachi, A. Terzic, & M. V. Cohen (Eds.), Heart physiology and pathology (4th ed., pp. 45–59). Academic Press. https://doi.org/10.1016/B978-012656975-9/50005-5
Arns, M., Conners, C. K., & Kraemer, H. C. (2013). A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. Journal of Attention Disorders, 17(5), 374–383. https://doi.org/10.1177/1087054712460087
Arns, M., Gunkelman, J., Olbrich, S., Sander, C., & Hegerl, U. (2011). EEG vigilance and phenotypes in neuropsychiatry: Implications for intervention. In R. Coben & J. R. Evans (Eds.), Neurofeedback and neuromodulation techniques and applications (pp. 79–123). Academic Press. https://doi.org/10.1016/B978-0-12-382235-2.00004-4
Arns, M., Heinrich, H., & Strehl, U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. Biological Psychology, 95, 108–115. https://doi.org/10.1016/j.biopsycho.2013.11.013
Australian Department of Health. (2021). People at higher risk of coronavirus (COVID-19). Health News. https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/advice-for-people-at-risk-of-coronavirus-covid-19
Australian Institute of Health and Welfare. (2021). Mental health services in Australia. https://www.aihw.gov.au/reports/mental-health-services/mental-health-services-in-australia/report-contents/mental-health-impact-of-covid-19
Ayers, M. E. (1995). EEG neurofeedback to bring individuals out of level 2 coma. Biofeedback & Self-Regulation, 20(3), 304–305.
Ayers, M. E., Sams, M. W., & Sterman, M. B. (2000). When to inhibit EEG activity instead of reinforcing and inhibiting simultaneously. Journal of Neurotherapy, 4(1), 83–93. https://doi.org/10.1300/J184v04n01_10
Balcombe, L., & De Leo, D. (2020). An integrated blueprint for digital mental health services amidst COVID-19. JMIR Mental Health, 7(7), e21718. https://doi.org/10.2196/21718
Bartsch, T., & Wulff, P. (2015). The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience, 309, 1–16. https://doi.org/10.1016/j.neuroscience.2015.07.084
Bearden, T. S., Cassisi, J. E., & Pineda, M. (2003). Neurofeedback training for a patient with thalamic and cortical infarctions. Applied Psychophysiology and Biofeedback, 28(3), 241–253. https://doi.org/10.1023/a:1024689315563
Beck, R. W., Laugharne, J., Laugharne, R., Woldman, W., McLean, B., Mastropasqua, C., Jorge, R., & Shankar, R. (2017). Neuroscience and Biobehavioral Reviews Abnormal cortical asymmetry as a target for neuromodulation in neuropsychiatric disorders : A narrative review and concept proposal. Neuroscience & Biobehavioral Reviews, 83, 21–31. https://doi.org/10.1016/j.neubiorev.2017.09.025
Benz, N., Hatz, F., Bousleiman, H., Ehrensperger, M. M., Gschwandtner, U., Hardmeier, M., Ruegg, S., Schindler, C., Zimmermann, R., Monsch, A. U., & Fuhr, P. (2014). Slowing of EEG background activity in Parkinson’s and Alzheimer’s disease with early cognitive dysfunction. Frontiers in Aging Neuroscience, 6, 314. https://doi.org/10.3389/fnagi.2014.00314
Berridge, C. W., Schmeichel, B. E., & España, R. A. (2012). Noradrenergic modulation of wakefulness/arousal. Sleep Medicine Reviews, 16(2), 187–197. https://doi.org/10.1016/j.smrv.2011.12.003
Bodro, M., Compta, Y., & Sánchez-Valle, R. (2021). Presentations and mechanisms of CNS disorders related to COVID-19. Neurology, Neuroimmunology & Neuroinflammation, 8(1), e923. https://doi.org/10.1212/NXI.0000000000000923
Bolay, H., & Moskowitz, M. A. (2005). The emerging importance of cortical spreading depression in migraine headache. Revue Neurologique, 161(6–7), 655–657. https://doi.org/10.1016/S0035-3787(05)85108-2
Bounias, M., Laibow, R. E., Stubblebine, A. N., Sandground, H., & Bonaly, A. (2002). EEG-neurobiofeedback treatment of patients with brain injury part 4: Duration of treatments as a function of both the initial load of clinical symptoms and the rate of rehabilitation. Journal of Neurotherapy, 6(1), 23–28. https://doi.org/10.1300/J184v06n01_03
Budzynski, T. H., Budzynski, H. K., Evans, J., & Abarbanel, A. (2009). Introduction to quantitative EEG and neurofeedback: Advanced theory and applications. Academic Press. https://www.sciencedirect.com/science/book/9780123745347
Cassano, P., Petrie, S. R., Hamblin, M. R., Henderson, T. A., & Iosifescu, D. V. (2016). Review of transcranial photobiomodulation for major depressive disorder: Targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics, 3(3), 031404. https://doi.org/10.1117/1.NPh.3.3.031404
Cassia, M. A., Casazza, R., Napodano, P., & Cozzolino, M. (2021). COVID-19 infection and acute kidney injury: Cause or complication? Blood Purification, 10–13. https://doi.org/10.1159/000516336
Ceban, F., Nogo, D., Carvalho, I. P., Lee, Y., Nasri, F., Xiong, J., Lui, L. M. W., Subramaniapillai, M., Gill, H., Liu, R. N., Joseph, P., Teopiz, K. M., Cao, B., Mansur, R. B., Lin, K., Rosenblat, J. D., Ho, R. C., & McIntyre, R. S. (2021). Association between mood disorders and risk of COVID-19 infection, hospitalization, and death: A systematic review and meta-analysis. JAMA Psychiatry, 78(10), 1079–109. https://doi.org/10.1001/jamapsychiatry.2021.1818
Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H.-J., & Walter, M. (2013). Association between heart rate variability and fluctuations in resting-state functional connectivity. NeuroImage, 68, 93–104. https://doi.org/10.1016/j.neuroimage.2012.11.038
Chang, W.-L., Lee, J.-T., Li, C.-R., Davis, A. H. T., Yang, C.-C., & Chen, Y.-J. (2019). Effects of heart rate variability biofeedback in patients with acute ischemic stroke: A randomized controlled trial. Biological Research for Nursing, 22(1), 34–44. https://doi.org/10.1177/1099800419881210
Charles, A. C., & Baca, S. M. (2013). Cortical spreading depression and migraine. Nature Reviews Neurology, 9(11), 637–644. https://doi.org/10.1038/nrneurol.2013.192
Cheng, Q., Yang, Y., & Gao, J. (2020). Infectivity of human coronavirus in the brain. EBioMedicine, 56, 102799. https://doi.org/10.1016/j.ebiom.2020.102799
Cho, H.-Y., Kim, K., Lee, B., & Jung, J. J. (2015). The effect of neurofeedback on a brain wave and visual perception in stroke: A randomized control trial. Journal of Physical Therapy Science, 27(3), 673–676. https://doi.org/10.1589/jpts.27.673
Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374–381. https://doi.org/10.1038/nrendo.2009.106
Cutsforth-Gregory, J. K., & Benarroch, E. E. (2017). Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology, 88(12), 1187–1196. https://doi.org/10.1212/WNL.0000000000003751
Dampney, R. A. L. (2016). Central neural control of the cardiovascular system: Current perspectives. Advances in Physiology Education, 40(3), 283–296. https://doi.org/10.1152/advan.00027.2016
Davis, C., Logan, N., Tyson, G., Orton, R., Harvey, W., Perkins, J., The COVID-19 Genomics UK (COG-UK) Consortium, Peacock, T. P., Barclay, W. S., Cherepanov, P., Palmarini, M., Murcia, P. R., Patel, A. H., Robertson, D. L., Thomson, E. C., & Willett, B. J. (2021). Reduced neutralization of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. medRxiv, 2021.06.23.21259327. https://doi.org/10.1101/2021.06.23.21259327
De La Torre, J. C. (2017). Treating cognitive impairment with transcranial low level laser therapy. Journal of Photochemistry & Photobiology B: Biology, 168, 149–155. https://doi.org/10.1016/j.jphotobiol.2017.02.008
De Marco, M. & Venneri, A. (2018). Volume and connectivity of the ventral tegmental area are linked to neurocognitive signatures of Alzheimer’s disease in humans. Journal of Alzeimer’s Disease, 63, 167–180. https://doi.org/10.3233/JAD-171018
Drenckhahn, C., Winkler, M. K. L., Major, S., Scheel, M., Kang, E.-J., Pinczolits, A., Grozea, C., Hartings, J. A., Woitzik, J., & Dreier, J. P. (2012). Correlates of spreading depolarization in human scalp electroencephalography. Brain, 135(3), 853–868. https://doi.org/10.1093/brain/aws010
DuBrow, S., & Davachi, L. (2016). Temporal binding within and across events. Neurobiology of Learning and Memory, 134(Part A), 107–114. https://doi.org/10.1016/j.nlm.2016.07.011
Duff, J. (2016). The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of post-concussion syndrome. Clinical EEG and Neuroscience, 35(4), 198–209. https://doi.org/10.1177/155005940403500410
Dunkley, B. T., Doesburg, S. M., Sedge, P. A., Grodecki, R. J., Shek, P. N., Pang, E. W., & Taylor, M. J. (2014). Resting-state hippocampal connectivity correlates with symptom severity in post-traumatic stress disorder. NeuroImage: Clinical, 5, 377–384. https://doi.org/10.1016/j.nicl.2014.07.017
Egner, T., & Sterman, M. B. (2006). Neurofeedback treatment of epilepsy: From basic rationale to practical application. Expert Review of Neurotherapeutics, 6(2), 247–257. https://doi.org/10.1586/14737175.6.2.247
Elbaum, J., & Benson, D. M. (2007). Acquired brain injury: An integrative neuro-rehabilitation approach. New York, NY: Springer. https://doi.org/10.1007/978-0-387-37575-5
Evans, J. R. (Ed.). (2007). Handbook of neurofeedback: Dynamics and clinical applications (1st ed.). Boca Raton, FL: CRC Press. https://doi.org/10.1201/b14658
Fanselow, M. S., & Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7–19. https://doi.org/10.1016/j.neuron.2009.11.031
Farinholt, T., Doddapaneni, H., Qin, X., Menon, V., Meng, Q., Metcalf, G., Chao, H., Gingras, M.-C, Farinholt, P., Agrawal, C., Muzny, D. M., Piedra, P. A., Gibbs, R. A., & Petrosino, J. (2021). Transmission event of SARS-CoV-2 Delta variant reveals multiple vaccine breakthrough infections. medRxiv, 2021.06.28.2125878. https://doi.org/10.1101/2021.06.28.21258780
Fink, T. E., & Hagen, T. A. (2012). Use of a simple BrainMaster EEG training protocol to facilitate cognitive and physical recovery of a 22-month-old child suffering a SIDS-related anoxic injury: A case study (pp. 1–11). http://www.brainmaster.com/tfc/index_files/Publications/2015 Acorn_Health_Brainmaster_Study.pdf
Flamand, M., Perron, A., Buron, Y., & Szurhaj, W. (2020). Pay more attention to EEG in COVID-19 pandemic. Clinical Neurophysiology, 131(8), 2062–2064. https://doi.org/10.1016/j.clinph.2020.05.011
Frank, E., & Landgraf, R. (2008). The vasopressin system — From antidiuresis to psychopathology. European Journal of Pharmacology, 583(2–3), 226–242. https://doi.org/10.1016/j.ejphar.2007.11.063
Galanopoulou, A. S., Ferastraoaru, V., Correa, D. J., Cherian, K., Duberstein, S., Gursky, J., Hanumanthu, R., Hung, C., Molinero, I., Khodakivska, O., Legatt, A. D., Patel, P., Rosengard, J., Rubens, E., Sugrue, W., Yozawitz, E., Mehler, M. F., Ballaban-Gil, K., Haut, S. R., Moshé, S. L., & Boro, A. (2020). EEG findings in acutely ill patients investigated for SARS-CoV-2/COVID-19: A small case series preliminary report. Epilepsia Open, 5(2), 314–324. https://doi.org/10.1002/epi4.12399
Gevensleben, H., Albrecht, B., Lütcke, H., Auer, T., Dewiputri, W. I., Schweizer, R., Moll, G., Heinrich, H., & Rothenberger, A. (2014). Neurofeedback of slow cortical potentials: Neural mechanisms and feasibility of a placebo-controlled design in healthy adults. Frontiers in Human Neuroscience, 8, 990, 1–13. https://doi.org/10.3389/fnhum.2014.00990
Gilbert, C. (2003). Clinical applications of breathing regulation: Beyond anxiety management. Behavior Modification, 27(5), 692–709. https://doi.org/10.1177/0145445503256322
González-Alonso, J. (2012). Human thermoregulation and the cardiovascular system. Experimental Physiology, 97(3), 340–346. https://doi.org/10.1113/expphysiol.2011.058701
Gonzalez-Lima, F., & Barrett, D. W. (2014). Augmentation of cognitive brain functions with transcranial lasers. Frontiers in Systems Neuroscience, 8, 36, 1–4. https://doi.org/10.3389/fnsys.2014.00036
Gonzalez-Lima, F., Barksdale, B. R., & Rojas, J. C. (2014). Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochemical Pharmacology, 88(4), 584–593. https://doi.org/10.1016/j.bcp.2013.11.010
Gunn, B. G., & Baram, T. Z. (2017). Stress and seizures: Space, time and hippocampal circuits. Trends in Neurosciences, 40(11), 667–679. https://doi.org/10.1016/j.tins.2017.08.004
Hagedorn, D. (2014). Infection risk mitigation for biofeedback providers. Biofeedback, 42(3), 93–95. https://doi.org/10.5298/1081-5937-42.3.06
Hamblin, M. R. (2016). Shining light on the head: Photobiomodulation for brain disorders. BBA Clinical, 6, 113–124. https://doi.org/10.1016/j.bbacli.2016.09.002
Hamblin, M. R. (2019). Photobiomodulation for Alzheimer’s disease: Has the light dawned? Photonics, 6(3), 77. https://doi.org/10.3390/photonics6030077
Hammond, D. C. (2005). Temporal lobes and their importance in neurofeedback. Journal of Neurotherapy, 9(1), 67–88. https://doi.org/10.1300/J184v09n01_08
Hammond, D. C. (2007). Can LENS neurofeedback treat anosmia resulting from a head injury? Journal of Neurotherapy, 11(1), 57–62. https://doi.org/10.1300/J184v11n01_06
Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305–336. https://doi.org/10.1080/10874208.2011.623090
Hampshire, A., Trender, W., Chamberlain, S. R., Jolly, A. E., Grant, J. E., Patrick, F., Mazibuko, N., Williams, S. C. R., Barnby, J. M., Hellyer, P. & Mehta, M. A. (2021). Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine, 39, 101044. https://doi.org/10.1016/j.eclinm.2021.101044
Henry, D., Jones, M., Stehlik, P., & Glasziou, P. (2021). Effectiveness of COVID-19 vaccines: Findings from real world studies. The Medical Journal of Australia, 1505, 1–10. https://www.mja.com.au/journal/2021/effectiveness-covid-19-vaccines-findings-real-world-studies
Huston, J. M., & Tracey, K. J. (2015). The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway, and implications for therapy. Journal of Internal Medicine, 269(1), 45–53. https://doi.org/10.1111/j.1365-2796.2010.02321.x
Inui, K., Motomura, E., Kaige, H., & Nomura, S. (2001). Temporal slow waves and cerebrovascular diseases. Psychiatry and Clinical Neurosciences, 55(5), 525–531. https://doi.org/10.1046/j.1440-1819.2001.00900.x
Isokawa-Akesson, M., Wilson, C. L., & Babb, T. L. (1989). Inhibition in synchronously firing human hippocampal neurons. Epilepsy Research, 3(3), 236–247. https://doi.org/10.1016/0920-1211(89)90030-2
Johnstone, J., Gunkelman, J., & Lunt, J. (2005). Clinical database development: Characterization of EEG phenotypes. Clinical EEG and Neuroscience, 36(2), 99–107. httpa://doi.org/10.1177/155005940503600209
Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26(2), 235–258. https://doi.org/10.1016/S0149-7634(01)00068-9
Karki, R., Sharma, B. R., Tuladhar, S., Williams, E. P., Zalduondo, L., Samir, P., Zheng, M., Sundaram, B., Banoth, B., Malireddi, R. K. S., Schreiner, P., Neale, G., Vogel, P., Webby, R., Jonsson, C. B., & Kanneganti, T.-D. (2020). Synergism of TNF- a and IFN- g triggers inflammatory cell death , tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 184(1), 149–168. https://doi.org/10.1016/j.cell.2020.11.025
Kazemian, N., Mahmoudi, M., Halperin, F., Wu, J. C., & Pakpour, S. (2020). Gut microbiota and cardiovascular disease: Opportunities and challenges. Microbiome, 8, 36, 1–17. https://doi.org/10.1186/s40168-020-00821-0
Keller, I., & Garbacenkaite, R. (2015). Neurofeedback in three patients in the state of unresponsive wakefulness. Applied Psychophysiology and Biofeedback, 40, 349–356. https://doi.org/10.1007/s10484-015-9296-7
Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M., Kaptein, F. H. J., van Paassen, J., Stals, M. A. M., Huisman, M. V, & Endeman, H. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, 191, 145–147. https://doi.org/10.1016/j.thromres.2020.04.013
Kober, S. E., Schweiger, D., Witte, M., Reichert, J. L., Grieshofer, P., Neuper, C., & Wood, G. (2015). Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. Journal of NeuroEngineering and Rehabilitation, 12, 107, 1–13. https://doi.org/10.1186/s12984-015-0105-6
Koberda, J. L. (2014). Z-Score LORETA neurofeedback as a potential therapy in cognitive dysfunction and dementia. Journal of Psychology & Clinical Psychiatry, 1(6), 00037, 1–11. https://doi.org/10.15406/jpcpy.2014.01.00037
Koberda, J. L. (2015). Traumatic brain injury: Is neurofeedback the best available therapy? Journal of Neurology and Neurobiology, 1(3), 2–3. https://doi.org/10.16966/2379-7150.110
Koberda, J. L., & Stodolska-Koberda, U. (2014). Z-score LORETA neurofeedback as a potential rehabilitation modality in patients with CVA. Journal of Neurology and Stroke, 1(5), 00029, 1–5. https://doi.org/10.15406/jnsk.2014.01.00029
Koch, G., Motta, C., Bonnì, S., Pellicciari, M. C., Picazio, S., Casula, E. P., Maiella, M., Di Lorenzo, F., Ponzo, V., Ferrari, C., Scaricamazza, E., Caltagirone, C., & Martorana, A. (2020). Effect of rotigotine vs placebo on cognitive functions among patients with mild to moderate Alzheimer disease: A randomized clinical trial. JAMA Network Open, 3(7), e2010372, 1–12. https://doi.org/10.1001/jamanetworkopen.2020.10372
Kopańska, M., Banaś-Zabczyk, A., Łagowska, A., Kuduk, B., & Szczygielski, J. (2021). Changes in EEG recordings in COVID-19 patients as a basis for more accurate QEEG diagnostics and EEG neurofeedback therapy: A systematic review. Journal of Clinical Medicine, 10(6), 1300. https://doi.org/10.3390/jcm10061300
Kotchoubey, B., Strehl, U., Uhlmann, C., Holzapfel, S., König, M., Fröscher, W., Blankenhorn, V., & Birbaumer, N. (2001). Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia, 42(3), 406–416. https://doi.org/10.1046/j.1528-1157.2001.22200.x
Krasniqi, S., & Daci, A. (2019). Role of the angiotensin pathway and its target therapy in epilepsy management. International Journal of Molecular Sciences, 20(3), 726. https://doi.org/10.3390/ijms20030726
Kromenacker, B. W., Sanova, A. A., Marcus, F. I., Allen, J. J. B., & Lane, R. D. (2018). Vagal mediation of low-frequency heart rate variability during slow yogic breathing. Psychosomatic Medicine, 80(6), 581–587. https://doi.org/10.1097/PSY.0000000000000603
Kubota, T., Gajera, P. K., & Kuroda, N. (2021). Meta-analysis of EEG findings in patients with COVID-19. Epilepsy & Behavior, 115, 107682. https://doi.org/10.1016/j.yebeh.2020.107682
Kumral, D., Schaare, H. L., Beyer, F., Reinelt, J., Uhlig, M., Liem, F., Lampe, L., Babayan, A., Reiter, A., Erbey, M., Roebbig, J., Loeffler, M., Schroeter, M. L., Husser, D., Witte, A. V, Villringer, A., & Gaebler, M. (2019). The age-dependent relationship between resting heart rate variability and functional brain connectivity. NeuroImage, 185, 521–533.. https://doi.org/10.1016/j.neuroimage.2018.10.027
Larsen, P. D., Tzeng, Y. C., Sin, P. Y. W., & Galletly, D. C. (2010). Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respiratory Physiology & Neurobiology, 174(1–2), 111–118. https://doi.org/10.1016/j.resp.2010.04.021
Lechan, R. M., & Toni, R. (2016). Functional anatomy of the hypothalamus and pituitary. In K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, W. W. de Herder, K. Dhatariya, K. Dungan, J. M. Hershman, J. Hofland, S. Kalra, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, C. S. Kovacs, W. Kuohung, B. Laferrère, M. Levy, E. A. McGee, R. McLachlan, J. E. Morley, M. New, J. Purnell, R. Sahay, F. Singer, M. A. Sperling, C. A. Stratakis, D. L. Trence, D. P. Wilson (Eds.), Endotext. South Dartmouth (MA): MDText.com, Inc. http://www.ncbi.nlm.nih.gov/pubmed/25905349
Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: How and why does it work? Frontiers in Psychology, 5, 756, 1–9. https://doi.org/10.3389/fpsyg.2014.00756
Liang, X., Zou, Q., He, Y., & Yang, Y. (2013). Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 110(5), 1929–1934. https://doi.org/10.1073/pnas.1214900110
Liotta, E. M., Batra, A., Clark, J. R., Shlobin, N. A., Hoffman, S. C., Orban, Z. S., & Koralnik, I. J. (2020). Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Annals of Clinical and Translational Neurology, 7(11), 2221–2230. https://doi.org/10.1002/acn3.51210
Llitjos, J.-F., Leclerc, M. Chochois, C., Monsallier, J.-M., Ramakers, M., Auvray, M., & Merouani, K. (2020). High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. Journal of Thrombosis and Haemostasis, 18(7), 1743–1746. https://doi.org/10.1111/jth.14869
Marcus, E. M., & Jacobson, S., & Curtis, B. (2003). Integrated neuroscience: A clinical problem solving approach (1st ed.). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-1077-2
Marshall, M. (2020). How COVID-19 can damage the brain. Nature, 585(17 September), 342–343. https://doi.org/https://doi.org/10.1038/d41586-020-02599-5
Mather, M., & Thayer, J. F. (2018). How heart rate variability affects emotion regulation brain networks. Current Opinion in Behavioral Sciences, 19, 98–104. https://doi.org/10.1016/j.cobeha.2017.12.017
Mayer, K. N., Ghadri, J.-R, Jaguszewski, M., Scherff, F., Saguner, A. M., Kazemian, E., Baumann, C. R., Jenewein, J., Tsakiris, M., Lüscher, T. F., Brugger, P., & Templin, C. (2016). Takotsubo syndrome — A close connection to the brain: A prospective study investigating neuropsychiatric traits. IJC Metabolic & Endocrine, 12, 36–41. https://doi.org/10.1016/j.ijcme.2016.06.001
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003
Moore, N. Z., Lempka, S. F., & Machado, A. (2014). Central neuromodulation for refractory pain. Neurosurgery Clinics of North America, 25(1), 77–83. https://doi.org/10.1016/j.nec.2013.08.011
Morales-Quezada, L., Martinez, D., El-Hagrassy, M. M., Kaptchuk, T. J., Sterman, M. B., & Yeh, G. Y. (2019). Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. Epilepsy & Behavior, 101, 106570. https://doi.org/10.1016/j.yebeh.2019.106570
Moreira, M. S., Velasco, I. T., Ferreira, L. S., Ariga, S. K. K., Abatepaulo, F., Grinberg, L. T., & Marques, M. M. (2011). Effect of laser phototherapy on wound healing following cerebral ischemia by cryogenic injury. Journal of Photochemistry and Photobiology, B: Biology, 105(3), 207–215. https://doi.org/10.1016/j.jphotobiol.2011.09.005
Moss, D., & Shaffer, F. (2017). The application of heart rate variability biofeedback to medical and mental health disorders. Biofeedback, 45(1), 2–8. https://doi.org/10.5298/1081-5937-45.1.03
Motomura, E., Inui, K., Shiroyama, T., Nakagawa, M., Nakase, S., & Okazaki, Y. (2003). Is temporal slow wave on EEG a useful diagnostic tool in vascular depression? Psychiatry and Clinical Neurosciences, 57(6), 610–611. https://doi.org/10.1046/j.1440-1819.2003.01178.x
Mottaz, A., Solcà, M., Magnin, C., Corbet, T., Schnider, A., & Guggisberg, A. G. (2015). Neurofeedback training of alpha-band coherence enhances motor performance. Clinical Neurophysiology, 126(9), 1754–1760. https://doi.org/10.1016/j.clinph.2014.11.023
Naeser, M. A., Martin, P. I., Ho, M. D., Krengel, M. H., Bogdanova, Y., Knight, J. A., Yee, M. K., Zafonte, R., Frazier, J., Hamblin, M. R., & Koo, B.-B. (2016). Transcranial, red/near-infrared light-emitting diode therapy to improve cognition in chronic traumatic brain injury. Photomedicine and Laser Surgery, 34(12), 610–626. https://doi.org/10.1089/pho.2015.4037
Naeser, M. A., Saltmarche, A. E., Krengel, M. H., Hamblin, M. R., & Knight, J. A. (2010). Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: Two case reports. In M. R. Hamblin, R. W. Waynant, & J. Anders (Eds.), Mechanisms for Low-Light Therapy V (Proceedings Vol. 7552). Society of Photo-optical Instrumentation Engineers. https://doi.org/10.1117/12.842510
Naeser, M. A., Zafonte, R., Krengel, M. H., Martin, P. I., Frazier, J., Hamblin, M. R., Knight, J. A., Meehanill, W. P., & Baker, E. H. (2014). Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: Open-protocol study. Journal of Neurotrauma, 31(11), 1008–1017. https://doi.org/10.1089/neu.2013.3244
Nakahara, S., Adachi, M., Ito, H., Matsumoto, M., Tajinda, K., & van Erp, T. G. M. (2018). Hippocampal pathophysiology: Commonality shared by temporal lobe epilepsy and psychiatric disorders. Neuroscience Journal, 2018, 4852359. https://doi.org/10.1155/2018/4852359
Nampoothiri, S., Sauve, F., Ternier, G., Fernandois, D., Coelho, C., Imbernon, M., Deligia, E., Perbet, R., Florent, V., Baroncini, M., Pasquier, F., Trottein, F., Maurage, C.-A., Mattot, V., Giacobini, P., Rasika, S., & Prevot, V. (2020). The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis. bioRxiv, 2020.06.08.139329. https://doi.org/10.1101/2020.06.08.139329
Nattie, E., & Li, A. (2012). Central chemoreceptors: Locations and functions. Comprehensive Physiology, 2(1), 221–254. https://doi.org/10.1002/cphy.c100083
Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24, 422, 1–10. https://doi.org/10.1186/s13054-020-03120-0
Nicola, S. M. (2007). The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology, 191(3), 521–550. https://doi.org/10.1007/s00213-006-0510-4
Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. https://doi.org/10.1016/j.paid.2012.11.037
Noorimotlagh, Z., Mirzaee, S. A., Jaafarzadeh, N., Maleki, M., Kalvandi, G., & Karami, C. (2021). A systematic review of emerging human coronavirus (SARS-CoV-2) outbreak: Focus on disinfection methods, environmental survival, and control and prevention strategies. Environmental Science and Pollution Research, 28, 1–15. https://doi.org/10.1007/s11356-020-11060-z
Nunes-Vaz, R. A., & Macintyre, C. R. (2021). Observations on the current outbreak of the SARS-CoV-2 Delta variant in Sydney. Global Biosecurity, 3(1), 2–4. http://doi.org/10.31646/gbio.121
Odriozola, A., Ortega, L., Martinez, L., Odriozola, S., Torrens, A., Corroleu, D., Martínez, S., Ponce, M., Meije, Y., Presas, M., Duarte, A., Odriozola, M. B., & Malik, R. A. (2020). Widespread sensory neuropathy in diabetic patients hospitalized with severe COVID-19 infection. Diabetes Research and Clinical Practice, 172, 108631. https://doi.org/10.1016/j.diabres.2020.108631
Olliaro, P., Torreele, E., & Vaillant, M. (2021). COVID-19 vaccine efficacy and effectiveness — The elephant (not) in the room. The Lancet Microbe, 2(7), e279–e280. https://doi.org/10.1016/S2666-5247(21)00069-0
Omejc, N., Rojc, B., Battaglini, P. P., & Marusic, U. (2019). Review of the therapeutic neurofeedback method using electroencephalography: EEG neurofeedback. Bosnian Journal of Basic Medical Sciences, 19(3), 213–220. https://doi.org/10.17305/bjbms.2018.3785
Panariello, F., Cellini, L., Speciani, M., De Ronchi, D., & Atti, A. R. (2020). How does SARS-CoV-2 affect the central nervous system? A working hypothesis. Frontiers in Psychiatry, 11, 582345. https://doi.org/10.3389/fpsyt.2020.582345
Park, G., & Thayer, J. F. (2014). From the heart to the mind: Cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Frontiers in Psychology, 5, 278, 1–8. https://doi.org/10.3389/fpsyg.2014.00278
Perna, G., Riva, A., Defillo, A., Sangiorgio, E., Nobile, M., & Caldirola, D. (2019). Heart rate variability: Can it serve as a marker of mental health resilience? Journal of Affective Disorders, 263, 754–761. https://doi.org/10.1016/j.jad.2019.10.017
Persson, P. B., & Kirchheim, H. R. (1991). Baroreceptor reflexes: Integrative functions and clinical aspects. Springer. https://doi.org/10.1007/978-3-642-76366-3
Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Frontiers in Systems Neuroscience, 10, 104. https://doi.org/10.3389/fnsys.2016.00104
Petra, A. I., Panagiotidou, S., Hatziagelaki, E., Stewart, J. M., Conti, P., & Theoharides, T. C. (2015). Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clinical Therapeutics, 37(5), 984–995. https://doi.org/10.1016/j.clinthera.2015.04.002
Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., Paolucci, S., Inghilleri, M., Astolfi, L., Cincotti, F., & Mattia, D. (2015). Brain–computer interface boosts motor imagery practice during stroke recovery. Annals of Neurology, 77(5), 851–865. https://doi.org/10.1002/ana.24390
Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32(4), 301–318. https://doi.org/10.1111/j.1469-8986.1995.tb01213.x
Przedborski, S. (2017). The two-century journey of Parkinson disease research. Nature Reviews Neuroscience, 18(4), 251–259. https://doi.org/10.1038/nrn.2017.25
Purushothuman, S., Johnstone, D. M., Nandasena, C., Mitrofanis, J., & Stone, J. (2014). Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex — Evidence from two transgenic mouse models. Alzheimer’s Research & Therapy, 6, 2. https://doi.org/10.1186/alzrt232
Rajkumar, R. P. (2020). Post-traumatic stress in the wake of the COVID-19 pandemic: A scoping review. F1000Research, 9, 675, 1–7. https://doi.org/10.12688/f1000research.24513.1
Ramirez, V., Ryan, C. P., Eldakar, O. T., & Gallup, A. C. (2019). Manipulating neck temperature alters contagious yawning in humans. Physiology & Behavior, 207, 86–89. https://doi.org/10.1016/j.physbeh.2019.04.016
Ranpuria, R., Hall, M., Chan, C. T., & Unruh, M. (2008). Heart rate variability (HRV) in kidney failure: Measurement and consequences of reduced HRV. Nephrology Dialysis Transplantation, 23(2), 444–449. https://doi.org/10.1093/ndt/gfm634
Reichert, J. L., Kober, S. E., Schweiger, D., Grieshofer, P., Neuper, C., & Wood, G. (2016). Shutting down sensorimotor interferences after stroke: A proof-of-principle SMR neurofeedback study. Frontiers in Human Neuroscience, 10, 348, 1–14. https://doi.org/10.3389/fnhum.2016.00348
Ros, T., Baars, B. J., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Frontiers in Human Neuroscience, 8, 1008. https://doi.org/10.338/fnhum.2014.01008
Roy, B., Dhillon, J. K., Habib, N., & Pugazhandhi, B. (2021). Global variants of COVID-19: Current understanding. Journal of Biomedical Sciences, 1343, 8–11. https://doi.org/10.3126/jbs.v8i1.38453
Rubin, R. (2021). COVID-19 vaccines vs variants—Determining how much immunity is enough. JAMA, 325(13), 1241–1243. https://doi.org/10.1001/jama.2021.3370
Saltmarche, A. E., Naeser, M. A., Ho, K. F., Hamblin, M. R., & Lim, L. (2017). Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: A case series report. Photomedicine and Laser Surgery, 35(8), 432–441. https://doi.org/10.1089/pho.2016.4227
Satarker, S., & Nampoothiri, M. (2020). Involvement of the nervous system in COVID-19: The bell should toll in the brain. Life Sciences, 262, 118568. https://doi.org/10.1016/j.lfs.2020.118568
Schroeder, E. B., Liao, D., Chambless, L. E., Prineas, R. J., Evans, G. W., & Heiss, G. (2003). Hypertension, blood pressure, and heart rate variability. Hypertension, 42(6), 1106–1111. https://doi.org/10.1161/01.HYP.0000100444.71069.73
Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199–207. https://doi.org/10.1038/35044563
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, 1040. https://doi.org/10.3389/fpsyg.2014.01040
Shaffer, F., & Venner, J. (2013). Heart rate variability anatomy and physiology. Biofeedback, 41(1), 13–25. https://doi.org/10.5298/1081-5937-41.1.05
Sherlin, L., Arns, M., Lubar, J., & Sokhadze, E. (2010). A position paper on neurofeedback for the treatment of ADHD. Journal of Neurotherapy, 14(2), 66–78. https://doi.org/10.1080/10874201003773880
Silberstein, S. D. (2000). Practice parameter: Evidence-based guidelines for migraine headache (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 55(6), 754–762 https://doi.org/10.1212/wnl.55.6.754
Simkin, D. R., Thatcher, R. W., & Lubar, J. (2014). Quantitative EEG and neurofeedback in children and adolescents: Anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury. Child and Adolescent Psychiatric Clinics of North America, 23(3), 427–464. https://doi.org/10.1016/j.chc.2014.03.001
Simon, E. (1974). Temperature regulation: The spinal cord as a site of extrahypothalamic thermoregulatory functions. In Reviews of Physiology, Biochemistry and Phamacology (vol. 71, pp. 1–76). Springer. https://doi.org/10.1007/BFb0027660
Singh, R. B., Choudhury, J., De Meester, F. M., & Wilczynska, A. (2014). The gut, brain, and heart connection. World Heart Journal, 3(2), 151–174. https://www.researchgate.net/publication/261285513_The_Gut_Brain_and_Heart_Connection
Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N., & Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. https://doi.org/10.1038/nrn.2016.164
Small, S. L., Buccino, G., & Solodkin, A. (2013). Brain repair after stroke—A novel neurological model. Nature Reviews Neurology, 9(12), 698–707. https://doi.org/10.1038/nrneurol.2013.222
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274–296. https://doi.org/10.1016/j.neubiorev.2017.02.003
Stadnytskyi, V., Bax, C. E., Bax, A., & Anfinrud, P. (2020). The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proceedings of the National Academy of Sciences of the United States of America, 117(22), 11875–11877. https://doi.org/10.1073/pnas.2006874117
Sterman, M. B. (2010). Biofeedback in the treatment of epilepsy. Cleveland Clinic Journal of Medicine, 77(7 Suppl. 3), S60–S67. https://doi.org/10.3949/ccjm.77.s3.11
Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35. https://doi.org/10.1007/s10484-006-9002-x
Strehl, U., Aggensteiner, P., Wachtlin, D., Brandeis, D., Albrecht, B., Arana, M., Bach, C., Banaschewski, T., Bogen, T., Flaig-Röhr, A., Freitag, C. M., Fuchsenberger, Y., Gest, S., Gevensleben, H., Herde, L., Hohmann, S., Legenbauer, T., Marx, A.-M., Millenet, S., Pniewski, B. … Holtmann, M. (2017). Neurofeedback of slow cortical potentials in children with attention-deficit/hyperactivity disorder: A multicenter randomized trial controlling for unspecific effects. Frontiers in Human Neuroscience, 11, 135. https://doi.org/10.3389/fnhum.2017.00135
Stute, N. L., Stickford, J. L., Province, V. M., Augenreich, M. A., Ratchford, S. M., & Stickford, A. S. L. (2021). COVID-19 is getting on our nerves: Sympathetic neural activity and hemodynamics in young adults recovering from SARS-CoV-2. The Journal of Physiology, 599(18), 4269–4285. https://doi.org/10.1113/JP281888
Sugahara, H. (2004). Brain blood perfusion hypothesis for migraine, anger, and epileptic attacks. Medical Hypotheses, 62(5), 766–769. https://doi.org/10.1016/j.mehy.2003.11.029
Sundman, M. H., Chen, N.-K., Subbian, V., & Chou, Y.-H.. (2017). The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain, Behavior, and Immunity, 66, 31–44. https://doi.org/10.1016/j.bbi.2017.05.009
Tan, G., Thornby, J., Hammond, D. C., Strehl, U., Canady, B., Arnemann, K., & Kaiser, D. A. (2009). Meta-analysis of EEG biofeedback in treating epilepsy. Clinical EEG and Neuroscience, 40(3), 173–179. https://doi.org/10.1177/155005940904000310
Tang, W. H. W., Kitai, T., & Hazen, S. L.. (2017). Gut microbiota in cardiovascular health and disease. Circulation Research, 120(7), 1183–1196. https://doi.org/10.1161/CIRCRESAHA.117.309715
Taubøll, E., Sveberg, L., & Svalheim, S. (2015). Interactions between hormones and epilepsy. Seizure, 28, 3–11. https://doi.org/10.1016/j.seizure.2015.02.012
Thatcher, R. W., Biver, C. J., Soler, E. P., Lubar, J., & Koberda, J. L. (2020). New advances in electrical neuroimaging, brain networks and neurofeedback protocols. Journal of Neurology and Neurobiology, 6(3), 1–14. https://doi.org/10.16966/2379-7150.168
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216. https://doi.org/10.1016/S0165-0327(00)00338-4
Thayer, J. F., Nabors-Oberg, R., & Sollers, J. J., 3rd. (1997). Thermoregulation and cardiac variability: A time-frequency analysis. Biomedical Science Instrumentation, 34, 252–256. https://pubmed.ncbi.nlm.nih.gov/9603048/
Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122–131. https://doi.org/10.1016/j.ijcard.2009.09.543
Tracey, K. J. (2002). The inflammatory reflex. Nature, 420, 853–859. https://doi.org/10.1038/nature01321
Trammell, J. P., MacRae, P. G., Davis, G., Bergstedt, D., & Anderson, A. E. (2017). The relationship of cognitive performance and the theta-alpha power ratio is age-dependent: An EEG study of short term memory and reasoning during task and resting-state in healthy young and old adults. Frontiers in Aging Neuroscience, 9, 364, 1–10. https://doi.org/10.3389/fnagi.2017.00364
Vaschillo, E., Lehrer, P., Rishe, N., & Konstantinov, M. (2002). Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system. Applied Psychophysiology and Biofeedback, 27(1), 1–27. https://doi.org/10.1023/a:1014587304314
Vellieux, G., Rouvel-Tallec, A., Jaquet, P., Grinea, A., Sonneville, R., & d’Ortho, M.-P. (2020). COVID-19 associated encephalopathy: Is there a specific EEG pattern? Clinical Neurophysiology, 131(8), 1928–1930. https://doi.org/10.1016/j.clinph.2020.06.005
Wang, J.-R., & Hsieh, S. (2013). Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology, 124(12), 2406–2420. https://doi.org/10.1016/j.clinph.2013.05.020
Wang, L., Sievert, D., Clark, A. E., Lee, S., Federman, H., Gastfriend, B. D., Shusta, E. V., Palecek, S. P., Carlin, A. F., & Gleeson, J. G. (2021). A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nature Medicine, 27, 1600–1606. https://doi.org/10.1038/s41591-021-01443-1
Whitley, R. J. (1990). Viral encephalitis. The New England Journal of Medicine, 323(4), 242–250. https://doi.org/10.1056/nejm199007263230406
Wilhelm, I., Groch, S., Preiss, A., Walitza, S., & Huber, R. (2017). Widespread reduction in sleep spindle activity in socially anxious children and adolescents. Journal of Psychiatric Research, 88, 47–55. https://doi.org/10.1016/j.jpsychires.2016.12.018
World Health Organization. (2021). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/
Xi, J., Si, X. A., & Nagarajan, R. (2020). Effects of mask-wearing on the inhalability and deposition of airborne SARS-CoV-2 aerosols in human upper airway. Physics of Fluids, 32, 123311–123316. https://doi.org/10.1063/5.0034580
Xia, N., & Li, H. (2018). Loneliness, social isolation, and cardiovascular health. Antioxidants & Redox Signaling, 28(9), 837–851. https://doi.org/10.1089/ars.2017.7312
Yucha, C. B., & Montgomery, D. D. (2008). Evidence-based practice in biofeedback and neurofeedback. Applied Psychophysiology and Biofeedback. https://h48h0t9r6k3b4jph1szaiz1b-wpengine.netdna-ssl.com/wp-content/uploads/2018/11/EvidenceBasedYuchaMontgomeryW.pdf
Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., & Gottfried, J. A. (2016). Nasal respiration entrains human limbic oscillations and modulates cognitive function. The Journal of Neuroscience, 36(49), 12448–12467. https://doi.org/10.1523/JNEUROSCI.2586-16.2016
Zubair, A. S., McAlpine, L. S., Gardin, T., Farhadian, S., Kuruvilla, D. E., & Spudich, S. (2020). Neuropathogenesis and neurologic manifestations of the Coronaviruses in the age of Coronavirus disease 2019: A review. JAMA Neurology, 77(8), 1018–1027. https://doi.org/10.1001/jamaneurol.2020.2065
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).