Presession Posterior Alpha Enhancement May Accelerate Neurofeedback Learning and Response

Authors

  • Revital Yonah BetterFly Neurofeedback

DOI:

https://doi.org/10.15540/nr.8.1.29

Keywords:

neurofeedback, EEG biofeedback, alpha upregulation, implicit procedural learning, neurofeedback priming, attention

Abstract

Alpha band oscillations are characterized phenomenologically by a state of relaxed, unfocused attention and are implicated in enhanced learning and memory performance.  Alpha power may reflect cortical inhibition in task-irrelevant brain regions, thus leaving more neural resources available to task-relevant regions and processes.  In this paper we propose that a short priming session with a posterior alpha upregulation protocol may accelerate subsequent neurofeedback learning with the client’s main training protocols.  Neurofeedback relies to a large extent on implicit learning processes mediated by the basal ganglia and frontal cortical regions.  Alpha uptraining posteriorly may inhibit task-irrelevant cortical regions dedicated mostly to explicit processing and externally oriented attention, thereby clearing the way for cortical and subcortical regions directly involved in neurofeedback learning to process the feedback more efficiently.  It may thus serve to accelerate the learning process and efficacy of neurofeedback training.  Various considerations and possible side effects are discussed.

References

Adrian, E. D., & Matthews, B. H. C. (1934). The Berger rhythm: Potential changes from the occipital lobes in man. Brain, 57, 355–385. https://doi.org/10.1093/brain/awp324

Aizenstein, H. J., Stenger, V. A., Cochran, J., Clark, K., Johnson, M., Nebes, R. D., & Carter, C. S. (2004). Regional brain activation during concurrent implicit and explicit sequence learning. Cerebral Cortex, 14(2), 199–208. https://doi.org/10.1093/cercor/bhg119

Alexeeva, M. V., Balios, N. V., Muravlyova, K. B., Sapina, E. V., & Bazanova, O. M. (2012). Training for voluntarily increasing individual upper alpha power as a method for cognitive enhancement. Human Physiology, 38(1), 40–48. https://doi.org/10.1134/S0362119711060028

Alhambra, M. A., Fowler, T. P., & Alhambra, A. A. (1995). EEG biofeedback: A new treatment option for ADD/ADHD. Journal of Neurotherapy, 1(2), 39–43. https://doi.org/10.1300/J184v01n02_03

Ancoli, S., & Kamiya, J. (1978). Methodological issues in alpha biofeedback training. Biofeedback and Self-Regulation, 3, 159–183. https://doi.org/10.1007/BF00998900

Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., Lubar, J. F., & Kounios, J. (2007). EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. The Clinical Neuropsychologist, 21(1), 110¬–129. https://doi.org/10.1080/13854040600744839

Arns, M. (2012). EEG-based personalized medicine in ADHD: Individual alpha peak frequency as an endophenotype associated with nonresponse. Journal of Neurotherapy, 16(2), 123–141. https://doi.org/10.1080/10874208.2012.677664

Baars, B. J., & Gage, N. M. (2010). Learning and memory. In B. J. Baars & N. M. Gage (Eds.), Cognition, brain, and consciousness (2nd ed., pp. 304–343). Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-12-375070-9.00009-7

Barabasz, A. F., & Barabasz, M. (1995). Attention deficit hyperactivity disorder: Neurological basis and treatment alternatives. Journal of Neurotherapy, 1(1), 1–10. https://doi.org/10.1300/J184v01n01_01

Barabasz, A. F., & Barabasz, M. (1999). Treating ADHD with hypnosis and neurotherapy. Paper presented at the Annual Convention of the American Psychological Association. Boston, MA. Retrieved from https://files.eric.ed.gov/fulltext/ED435076.pdf

Bazanova, O. M. (2012). Alpha EEG activity depends on the individual dominant rhythm frequency. Journal of Neurotherapy, 16(4), 270–284. https://doi.org/10.1080/10874208.2012.730786

Bazanova, O. M., & Aftanas, L. I. (2008). Individual measures of electroencephalogram alpha activity and non-verbal creativity. Neuroscience and Behavioral Physiology, 38(3), 227–235. https://doi.org/10.1007/s11055-008-0034-y

Bazanova, O. M., & Aftanas, L. I. (2010). Individual EEG alpha activity analysis for enhancement neurofeedback efficiency: Two case studies. Journal of Neurotherapy, 14(3), 244–253. https://doi.org/10.1080/10874208.2010.501517

Bazanova, O. M., Kondratenko, A., Kondratenko, O., Mernaya, E., & Zhimulev, E. (2007, June). New computer-based technology to teach peak performance in musicians. Presented at the 29th International Conference on Information Technology Interfaces, Cavtat, Croatia, Vol. 7, pp. 39–44. Retrieved from https://www.researchgate.net/publication/4266106_New_Computer-Based_Technology_to_Teach_Peak_Performance_in_Musicians

Bazanova, O. M., Verevkin, E. G., & Shtark, M. B. (2007). Biofeedback in optimizing psychomotor reactivity: II. The dynamics of segmental alpha-activity characteristics. Human Physiology, 33(6), 695–700. https://doi.org/10.1134/S0362119707060059

Bazanova, O. M, & Vernon, D. (2014). Interpreting EEG alpha activity. Neuroscience & Behavioral Reviews, 44, 94–110. https://doi.org/10.1016/j.neubiorev.2013.05.007

Bednár, J. (2018, September 7). Hacking the brain with open-source EEG and neurofeedback (Beyond Psychedelics 2018 talk) [Video]. YouTube. https://www.youtube.com/watch?v=C_tS3cEfp9o&list=PLd058iT9keO5maJC7bxmcQqenyEMf7EQr&index=6&t=1219s

Birbaumer, N., Ruiz, S., & Sitaram, R. (2013). Learned regulation of brain metabolism. Trends in Cognitive Sciences, 17(6), 295–302. https://doi.org/10.1016/j.tics.2013.04.009

Biswas, A., & Ray, S. (2019). Alpha neurofeedback has a positive effect for participants who are unable to sustain their alpha activity. eNeuro, 6(4). ENEURO.0498-18.2019. https://doi.org/10.1523/ENEURO.0498-18.2019

Bollimunta, A., Mo, J., Schroeder, C. E., & Ding, M. (2011). Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. The Journal of Neuroscience, 31(13), 4935–4943. https://doi.org/10.1523/JNEUROSCI.5580-10.2011

Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10, 113–125. https://doi.org/10.1038/nrn2558

Byeon, J., Choi, T. Y., Won, G. H., Lee, J., & Kim, J. W. (2020). A novel quantitative electroencephalography subtype with high alpha power in ADHD: ADHD or misdiagnosed ADHD? PLoS ONE, 15(11), e0242566. https://doi.org/10.1371/journal.pone.0242566

Cannon, R. L. (2012). LORETA neurofeedback: Odd reports, observations, and findings associated with spatial specific neurofeedback training. Journal of Neurotherapy, 16(2), 164–167. https://doi.org/10.1080/10874208.2012.677611

Cannon, R. L., Baldwin, D. R., Diloreto, D. J., Phillips, S. T., Shaw, T. L., & Levy, J. J. (2014). LORETA neurofeedback in the precuneus: Operant conditioning in basic mechanisms of self-regulation. Clinical EEG and Neuroscience, 45(4), 238–248. https://doi.org/10.1177%2F1550059413512796

Cannon, R. L., Strunk, W., Carroll, S., & Carroll, S. (2018). LORETA neurofeedback at precuneus in 3-year-old female with intrauterine drug exposure. NeuroRegulation, 5(2), 75–82. https://doi.org/10.15540/nr.5.2.75

Capotosto, P., Spadone, S., Tosoni, A., Sestieri, C., Romani, G. L., Della Penna, S., & Corbetta, M. (2015). Dynamics of EEG rhythms support distinct visual selection mechanisms in parietal cortex: A simultaneous transcranial magnetic stimulation and EEG study. The Journal of Neuroscience, 35(2), 721–730. https://doi.org/10.1523/jneurosci.2066-14.2015

Cassady, K., You, A., Doud, A., & He, B. (2014). The impact of mind-body awareness training on the early learning of a brain-computer interface. Technology, 2(3), 254–260. https://doi.org/10.1142/S233954781450023X

Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583. https://doi.org/10.1093/brain/awl004

Chafee, M. V., & Crowe, D. A. (2017). Implicit and explicit learning mechanisms meet in monkey prefrontal cortex. Neuron, 96(2), 256–258. https://doi.org/10.1016/j.neuron.2017.09.049

Cheng, M.-Y., Huang, C.-J., Chang, Y.-K., Koester, D., Schack, T., & Hung, T.-M. (2015). Sensorimotor rhythm neurofeedback enhances golf putting performance. Journal of Sport and Exercise Psychology, 37(6), 626–636. https://doi.org/10.1123/jsep.2015-0166

Chiew, M., LaConte, S. M., & Graham, S. J. (2012). Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. NeuroImage, 61(1), 21–31. https://doi.org/10.1016/j.neuroimage.2012.02.053

Chow, T., Javan, T., Ros, T., & Frewen, P. (2017). EEG dynamics of mindfulness meditation versus alpha neurofeedback: A sham-controlled study. Mindfulness, 8, 572–584. https://doi.org/10.1007/S12671-016-0631-8

Collura, F. T., & Siever, D. (2009). Audio-visual entrainment in relation to mental health and EEG. In T. H. Budzynski, H. K. Budzynski, J. R. Evans, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (2nd ed., pp. 195–220). Cambridge, MA: Academic Press.

Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47(1), 65–74. https://doi.org/10.1016/s0167-8760(02)00107-1

Da Costa, N. M. C., Bicho, E. G., & Dias, N. S. (2019). Does priming subjects, with not only resting state but also with mindfulness or/and guided imagery, affect self-regulation of SMR neurofeedback? Framework to improve brain self-regulation and support the rehabilitation of disorders such as depression, anxiety, stress and attention control. Frontiers in Cellular Neuroscience, Conference Abstract: XVI Meeting of the Portuguese Society for Neuroscience (SPN2019). https://doi.org/10.3389/conf.fncel.2019.01.00050

Da Costa, N. M. C., Bicho, E. G., & Dias, N. S. (2020, August). Priming with mindfulness affects our capacity to self-regulate brain activity? Presented at the 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), Vancouver, BC, Canada, pp. 1–8. https://doi.org/10.1109/SeGAH49190.2020.9201841

Deiber, M.-P., Hasler, R., Colin, J., Dayer, A., Aubry, J.-M., Baggio, S., … Ros, T. (2020). Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. NeuroImage: Clinical, 25, 102145. https://doi.org/10.1016/j.nicl.2019.102145

Destrebecqz, A., Peigneux, P., Laureys, S., Degueldre, C., Del Fiore, G., Aerts, J., … Maquet, P. (2005). The neural correlates of implicit and explicit sequence learning: Interacting networks revealed by the process dissociation procedure. Learning & Memory, 12(5), 480–490. https://doi.org/10.1101/lm.95605

Doppelmayr, M., Klimesch, W., Stadler, W., Pöllhuber, D., & Heine, C. (2002). EEG alpha power and intelligence. Intelligence, 30(3), 289–302. https://doi.org/10.1016/S0160-2896(01)00101-5

Doppelmayr, M., Klimesch, W., Sauseng, P., Hödlmoser, K., Stadler, W., & Hanslmayr, S. (2005). Intelligence related differences in EEG-bandpower. Neuroscience Letters, 381(3), 309–313. https://doi.org/10.1016/j.neulet.2005.02.037

Eichenbaum, H. (1999). Conscious awareness, memory and the hippocampus. Nature Neuroscience, 2, 775–776. https://doi.org/10.1038/12137

Emmert, K., Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E. J., … Haller, S. (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage, 124(A), 806–812. https://doi.org/10.1016/j.neuroimage.2015.09.042

Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive Brain Research, 20(3), 376–383. https://doi.org/10.1016/j.cogbrainres.2004.03.009

Escolano, C., Aguilar, M., & Minguez, J. (2011, August). EEG-based upper alpha neurofeedback training improves working memory performance. Presented at the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, pp. 2327–2330.

Faymonville, M.-E., Boly, M., & Laureys, S. (2006). Functional neuroanatomy of the hypnotic state. Journal of Physiology-Paris, 99(4–6), 463–469. https://doi.org/10.1016/j.jphysparis.2006.03.018

Fehmi, L. G., & Robbins, J. (2008). The open-focus brain: harnessing the power of attention to heal mind and body. Boulder, CO: Shambhala Publications.

Fell, J., Elfadil, H., Klaver, P., Roschke, J., Elger, C. E., & Fernández, G. (2002). Covariation of spectral and nonlinear EEG measures with alpha biofeedback. The International Journal of Neuroscience, 112(9), 1047–1057. https://doi.org/10.1080/00207450290026049

Fetz, E. E. (1969). Operant conditioning of cortical unit activity. Science, 163(3870), 955–958. Retrieved from https://depts.washington.edu/fetzweb/assets/fetz-science-1969.pdf

Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23(8), 2241–2246. https://doi.org/10.1111/j.1460-9568.2006.04751.x

Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30(3), 734–748. https://doi.org/10.1002/hbm.20538

Foster, D. S. (1990). EEG and subjective correlates of alpha-frequency binaural-beat stimulation combined with alpha biofeedback. Memphis State University. Retrieved from http://stealthskater.com/Documents/Lucid_07.pdf

Foxe, J. J., Simpson, G. V., & Ahlfors, S. P. (1998). Parieto-occipital ~10Hz activity reflects anticipatory state of visual attention mechanisms. NeuroReport, 9(17), 3929–3933. https://doi.org/10.1097/00001756-199812010-00030

Freedman, D. J., & Ibos, G. (2018). An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex. Neuron, 97(6), 1219–1234. https://doi.org/10.1016/j.neuron.2018.01.044

Gong, A., Nan, W., Yin, E., Jiang, C., & Fu, Y. (2020). Efficacy, trainability, and neuroplasticity of SMR vs. alpha rhythm shooting performance neurofeedback training. Frontiers in Human Neuroscience, 14, 94. https://doi.org/10.3389/fnhum.2020.00094

Graf, P., Squire, L. R., & Mandler, G. (1984). The information that amnesic patients do not forget. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 164–178. https://doi.org/10.1037/0278-7393.10.1.164

Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86(3), 141–155. https://doi.org/10.1016/j.pneurobio.2008.09.004

Green, E., & Green, A. (1977). Beyond biofeedback. New York, NY: Delacorte Press.

Gruzelier, J. H., & Egner, T. (2004). Physiological self-regulation: Biofeedback and neurofeedback. In A. Williamon (Ed.), Musical excellence: Strategies and techniques to enhance performance (pp. 197–219). London, UK: Oxford University Press. http://doi.org/10.1093/acprof:oso/9780198525356.003.0011

Gulbinaite, R., van Viegen, T., Wieling, M., Cohen, M. X., & VanRullen, R. (2017). Individual alpha peak frequency predicts 10 Hz flicker effects on selective attention. The Journal of Neuroscience, 37(42), 10173–10184. https://doi.org/10.1523/JNEUROSCI.1163-17.2017

Haegens, S., Händel, B. F., & Jensen, O. (2011). Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. The Journal of Neuroscience, 31(14), 5197–5204. https://doi.org/10.1523/JNEUROSCI.5199-10.2011

Haegens, S., Osipova, D., Oostenveld, R., & Jensen, O. (2010). Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Human Brain Mapping, 31(1), 26–35. https://doi.org/10.1002/hbm.20842

Haller, S., Birbaumer, N., & Veit, R. (2010). Real-time fMRI feedback training may improve chronic tinnitus. European Radiology, 20, 696–703. https://doi.org/10.1007/s00330-009-1595-z

Hammond, D. C. (2002). Clinical corner: The alpha rhythm in EEG. Journal of Neurotherapy, 6(3), 89–100. https://doi.org/10.1300/J184v06n03_09

Hammond, D. C. (2005). Neurofeedback treatment of depression and anxiety. Journal of Adult Development, 12, 131–137. https://doi.org/10.1007/s10804-005-7029-5

Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305–336. https://doi.org/10.1080/10874208.2011.623090

Hammond, D. C., Stockdale, S., Hoffman, D., Ayers, M. E., & Nash, J. (2001). Adverse reactions and potential iatrogenic effects in neurofeedback training. Journal of Neurotherapy, 4(4), 57–69. https://doi.org/10.1300/J184v04n04_09

Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L. (2011). The role of α oscillations in temporal attention. Brain Research Reviews, 67(1–2), 331–343. https://doi.org/10.1016/j.brainresrev.2011.04.002

Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback, 30(1), 1–10. https://doi.org/10.1007/s10484-005-2169-8

Hardman, E., Gruzelier, J., Cheesman, K., Jones, C., Liddiard, D., Schleichert, H., & Birbaumer, N. (1997). Frontal interhemispheric asymmetry: Self regulation and individual differences in humans. Neuroscience Letters, 221(2–3), 117–120. https://doi.org/10.1016/s0304-3940(96)13303-6

Hardt, J. V., & Gale, R. (1993, March). Creativity increases in scientists through alpha EEG feedback training. Proceedings of the Association for Applied Psychophysiology and Biofeedback, 24th Annual Meeting, Los Angeles, CA. Retrieved from https://cdn2.hubspot.net/hubfs/2414356/Biocybernaut_Institute_Aug_2016/PDF/ScienceArticle_CreIncSci.pdf?t=1472687102807

Hardt J. V., & Kamiya J. (1978). Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science, 201(4350), 79–81. https://doi.org/10.1126/science.663641

Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. The Journal of Neuroscience, 14(11), 6336–6353. https://doi.org/10.1523/JNEUROSCI.14-11-06336.1994

Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A., & Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer's, Huntington's, and Parkinson's disease patients. The Journal of Neuroscience, 9(2), 582–587. https://doi.org/10.1523/JNEUROSCI.09-02-00582.1989

Ibric, V. L., & Davis, C. J. (2007). The ROSHI in neurofeedback. In J. R. Evans (Ed.), Handbook of neurofeedback: Dynamics and clinical applications (pp. 185–211). New York, NY: Haworth Medical Press.

Jarbo, K., & Verstynen, T. D. (2015). Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. The Journal of Neuroscience, 35(9), 3865–3878. https://doi.org/10.1523/JNEUROSCI.2636-14.2015

Jaušovec, N. (1996). Differences in EEG alpha activity related to giftedness. Intelligence, 23(3), 159–173. https://doi.org/10.1016/S0160-2896(96)90001-X

Jelic, V., Johansson, S.-E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., … Wahlund, L.-O. (2000). Quantitative electroencephalography in mild cognitive impairment: Longitudinal changes and possible prediction of Alzheimer's disease. Neurobiology of Aging, 21(4), 533–540. https://doi.org/10.1016/s0197-4580(00)00153-6

Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186

Kawashima, R., O’Sullivan, B. T., & Roland, P. E. (1995). Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: Closing the “mind’s eye.” Proceedings of the National Academy of Sciences of the United States of America, 92(13), 5969–5972. https://doi.org/10.1073/pnas.92.13.5969

Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 3844–3851. https://doi.org/10.1152/jn.01234.2005

Kerson, C., Sherman, R. A., & Kozlowski, G. P. (2009). Alpha suppression and symmetry training for generalized anxiety symptoms. Journal of Neurotherapy, 13(3), 146–155. https://doi.org/10.1080/10874200903107405

Kirsch, D. L., & Nichols, F. (2013). Cranial electrotherapy stimulation for treatment of anxiety, depression, and insomnia. Psychiatric Clinics of North America, 36(1), 169–176. https://doi.org/10.1016/j.psc.2013.01.006

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195. https://doi.org/10.1016/S0165-0173(98)00056-3

Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2006). Upper alpha ERD and absolute power: Their meaning for memory performance. Progress in Brain Research, 159, 151–165. https://doi.org/10.1016/S0079-6123(06)59010-7

Klimesch, W., Doppelmayr, M., Pachinger, T., & Ripper, B. (1997). Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neuroscience Letters, 238(1–2), 9–12. https://doi.org/10.1016/s0304-3940(97)00771-4

Klimesch, W., Doppelmayr, M., Röhm, D., Pöllhuber, D., & Stadler, W. (2000). Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: A neglected paradox? Neuroscience Letters, 284(1–2), 97–100. https://doi.org/10.1016/S0304-3940(00)00985-X

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). Induced alpha band power changes in the human EEG and attention. Neuroscience Letters, 244(2), 73–76. https://doi.org/10.1016/S0304-3940(98)00122-0

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003

Klimesch, W., Schack, B., Schabus, M., Doppelmayr, M., Gruber, W., & Sauseng, P. (2004). Phase-locked alpha and theta oscillations generate the P1–N1 complex and are related to memory performance. Cognitive Brain Research, 19(3), 302–316. https://doi.org/10.1016/j.cogbrainres.2003.11.016

Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 1399–1402. https://doi.org/10.1126/science.273.5280.1399

Knyazev, G. G., Savostyanov, A. N., & Levin, E. A. (2006). Alpha synchronization and anxiety: Implications for inhibition vs. alertness hypotheses. International Journal of Psychophysiology, 59(2), 151–158. https://doi.org/10.1016/j.ijpsycho.2005.03.025

Kobayashi, S., Schultz, W., & Sakagami, M. (2010). Operant conditioning of primate prefrontal neurons. Journal of Neurophysiology, 103(4), 1843–1855. https://doi.org/10.1152/jn.00173.2009

Kober, S. E., Schweiger, D., Witte, M., Reichert, J. L., Grieshofer, P., Neuper, C., & Wood, G. (2015). Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. Journal of NeuroEngineering and Rehabilitation, 12, 107. https://doi.org/10.1186/s12984-015-0105-6

Kober, S. E., Witte, M., Ninaus, M., Koschutnig, K., Wiesen, D., Zaiser, G., … Wood, G. M. (2017). Ability to gain control over one’s own brain activity and its relation to spiritual practice: A multimodal imaging study. Frontiers in Human Neuroscience, 11, 271. https://doi.org/10.3389/fnhum.2017.00271

Kober, S. E., Witte, M., Ninaus, M., Neuper, C., & Wood, G. (2013). Learning to modulate one's own brain activity: The effect of spontaneous mental strategies. Frontiers in Human Neuroscience, 7, 695. https://doi.org/10.3389/fnhum.2013.00695

Konen, C. S., & Haggard, P. (2014). Multisensory parietal cortex contributes to visual enhancement of touch in humans: A single-pulse TMS study. Cerebral Cortex, 24(2), 501–507. https://doi.org/10.1093/cercor/bhs331

Koralek, A. C., Jin, X., Long, J. D., II, Costa, R. M., & Carmena, J. M. (2012). Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature, 483(7389), 331–335. https://doi.org/10.1038/nature10845

Kropotov, J. D. (2009). Quantitative EEG, event-related potentials and neurotherapy. Cambridge, MA: Academic Press.

Lam, S.-L., Criaud, M., Alegria, A., Barker, G. J., Giampietro, V., & Rubia, K. (2020). Neurofunctional and behavioural measures associated with fMRI-neurofeedback learning in adolescents with attention-deficit/hyperactivity disorder. NeuroImage: Clinical, 27, 102291. https://doi.org/10.1016/j.nicl.2020.102291

Lawrence, E. J., Su, L., Barker, G. J., Medford, N., Dalton, J., Williams, S. C. R., … David, A. S. (2014). Self‐regulation of the anterior insula: Reinforcement learning using real‐time fMRI neurofeedback. NeuroImage, 88, 113–124. https://doi.org/10.1016/j.neuroimage.2013.10.069

Liljeholm, M., & O'Doherty, J. P. (2012). Contributions of the striatum to learning, motivation, and performance: An associative account. Trends in Cognitive Sciences, 16(9), 467–475. https://doi.org/10.1016/j.tics.2012.07.007

London, P., Hart, J. T., & Leibovitz, M. P. (1968). EEG alpha rhythms and susceptibility to hypnosis. Nature, 219(5149), 71–72. https://doi.org/10.1038/219071a0

Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 74–82. https://doi.org/10.1016/j.cortex.2015.03.012

McNorgan, C. (2012). A meta-analytic review of multisensory imagery identifies the neural correlates of modality-specific and modality-general imagery. Frontiers in Human Neuroscience, 6, 285. https://doi.org/10.3389/fnhum.2012.00285

Meeuwissen, E. B., Takashima, A., Fernández, G., & Jensen, O. (2011). Increase in posterior alpha activity during rehearsal predicts successful long‐term memory formation of word sequences. Human Brain Mapping, 32(12), 2045–2053. https://doi.org/10.1002/hbm.21167

Milner, B., Corkin, S., & Teuber, H.-L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6(3), 215–234. https://doi.org/10.1016/0028-3932(68)90021-3

Mohagheghi, A., Amiri, S., Bonab, N. M., Chalabianloo, G., Noorazar, S. G., Tabatabaei, S. M., & Farhang, S. (2017). A randomized trial of comparing the efficacy of two neurofeedback protocols for treatment of clinical and cognitive symptoms of ADHD: Theta suppression/beta enhancement and theta suppression/alpha enhancement. BioMed Research International, 2017, 3513281. https://doi.org/10.1155/2017/3513281

Moriyama, T. S., Polanczyk, G., Caye, A., Banaschewski, T., Brandeis, D., & Rohde, L. A. (2012). Evidence-based information on the clinical use of neurofeedback for ADHD. Neurotherapeutics, 9, 588–598. https://doi.org/10.1007/s13311-012-0136-7

Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P.-I., … Rosa, A. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83–87. https://doi.org/10.1016/j.ijpsycho.2012.07.182

Niedermeyer, E. (1999). The normal EEG of the waking adult. In E. Niedermeyer & F. Lopes Da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 149–173). Baltimore, MD: Lippincott, Williams & Wilkins. Retrieved from http://www.ccs.fau.edu/~bressler/EDU/NTSA/References/Niedermeyer_1999.pdf

Ninaus, M., Kober, S. E., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., & Wood, G. (2013). Neural substrates of cognitive control under the belief of getting neurofeedback training. Frontiers in Human Neuroscience, 7, 914. https://doi.org/10.3389/fnhum.2013.00914

Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. https://doi.org/10.1016/j.paid.2012.11.037

Norris, S. L., Lee, C.-T., Burshteyn, D., & Cea-Aravena, J. (2000). The effects of performance enhancement training on hypertension, human attention, stress, and brain wave patterns. Journal of Neurotherapy, 4(3), 29–44. https://doi.org/10.1300/J184v04n03_03

Norris, S. L., Lee, C.-T., Cea, J., & Burshteyn, D. (1998). Performance enhancement training effects on attention Journal of Neurotherapy, 3(1), 19–25. https://doi.org/10.1300/J184v03n01_03

Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563–593. https://doi.org/10.1146/annurev.neuro.25.112701.142937

Peigneux, P., Laureys, S., Delbeuck, X., & Maquet, P. (2001). Sleeping brain, learning brain. The role of sleep for memory systems. NeuroReport, 12(18), A111–A124. https://doi.org/10.1097/00001756-200112210-00001

Peniston, E. G., & Kulkosky, P. J. (1991). Alpha-theta brainwave neurofeedback for Vietnam veterans with combat-related post-traumatic stress disorder. Medical Psychotherapy, 4, 47–60. Retrieved from https://giuliotarantino.com/wp-content/uploads/2020/04/penistonptsd-peniston1989.pdf

Peters, S., & Crone, E. A. (2017). Increased striatal activity in adolescence benefits learning. Nature Communications, 8, 1983. https://doi.org/10.1038/s41467-017-02174-z

Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1–2), 39–46. https://doi.org/10.1016/S0167-8760(96)00066-9

Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Moyano, J. C., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550. https://doi.org/10.1038/35107080

Putman, J. A. (2000). The effects of brief, eyes-open alpha brain wave training with audio and video relaxation induction on the EEG of 77 Army reservists. Journal of Neurotherapy, 4(1), 17–28. https://doi.org/10.1300/J184v04n01_03

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. https://doi.org/10.1073/pnas.98.2.676

Ramot, M., Grossman, S., Friedman, D., & Malach, R. (2016). Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. Proceedings of the National Academy of Sciences of the United States of America, 113(17), E2413–E2420. https://doi.org/10.1073/pnas.1516857113

Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A., Brown, H. D., … Rosen, B. R. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5(2), 124–132. https://doi.org/10.1002/(SICI)1097-0193(1997)5:2<124::AID-HBM6>3.0.CO;2-5

Ray, W. J., & Cole, H. W. (1985). EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228(4700), 750–752. https://doi.org/10.1126/science.3992243

Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning & Memory, 1(4), 217–229. Retrieved from http://learnmem.cshlp.org/content/1/4/217.full.pdf

Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278(5343), 1616–1619. https://doi.org/10.1126/science.278.5343.1616

Rohrmeier, M., & Rebuschat, P. (2012). Implicit learning and acquisition of music. Topics in Cognitive Science, 4(4), 525–553. https://doi.org/10.1111/j.1756-8765.2012.01223.x

Romei, V., Gross, J., & Thut, G. (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation? The Journal of Neuroscience, 30(25), 8692–8697. https://doi.org/10.1523/jneurosci.0160-10.2010

Ros, T., Michela, A., Bellman, A., Vuadens, P., Saj, A., & Vuilleumier, P. (2017). Increased alpha-rhythm dynamic range promotes recovery from visuospatial neglect: A neurofeedback study. Neural Plasticity, 2017, 7407241. https://doi.org/10.1155/2017/7407241

Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. (1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392(6676), 595–598. https://doi.org/10.1038/33396

Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A., … Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19(21), 1846–1852. https://doi.org/10.1016/j.cub.2009.08.062

Saxby, E., & Peniston, E. G. (1995). Alpha‐theta brainwave neurofeedback training: An effective treatment for male and female alcoholics with depressive symptoms. Journal of Clinical Psychology, 51(5), 685–693. https://doi.org/10.1002/1097-4679(199509)51:5<685::AID-JCLP2270510514>3.0.CO;2-K

Scharnowski, F., Veit, R., Zopf, R., Studer, P., Bock, S., Diedrichsen, J., … Weiskopf, N. (2015). Manipulating motor performance and memory through real-time fMRI neurofeedback. Biological Psychology, 108, 85–97. https://doi.org/10.1016/j.biopsycho.2015.03.009

Seger, C. A., Prabhakaran, V., Poldrack, R. A., & Gabrieli, J. D. E. (2000). Neural activity differs between explicit and implicit learning of artificial grammar strings: An fMRI study. Psychobiology, 28(3), 283–292. https://doi.org/10.3758/BF03331987

Sherlin, L. (2009). Diagnosing and treating brain function through the use of low resolution brain electromagnetic tomography (LORETA). In T. H. Budzynski, H. K. Budzynski, J. R. Evans, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (2nd ed., pp. 83–101). Cambridge, MA: Academic Press.

Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy, 15(4), 292–304. https://doi.org/10.1080/10874208.2011.623089

Sigala, R., Haufe, S., Roy, D., Dinse, H. R., & Ritter, P. (2014). The role of alpha-rhythm states in perceptual learning: Insights from experiments and computational models. Frontiers in Computational Neuroscience, 8, 36. https://doi.org/10.3389/fncom.2014.00036

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., … Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. https://doi.org/10.1038/nrn.2016.164

Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13515–13522. https://doi.org/10.1073/pnas.93.24.13515

Sterman, M. B. (1977). Sensorimotor EEG operant conditioning: Experimental and clinical effects. Pavlovian Journal of Biological Science, 12(2), 63–92. https://doi.org/10.1007/BF03004496

Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35. https://doi.org/10.1007/s10484-006-9002-x

Stieger, J. R., Engel, S., Jiang, H., Cline, C. C., Kreitzer, M. J., & He, B. (2021). Mindfulness improves brain–computer interface performance by increasing control over neural activity in the alpha band. Cerebral Cortex, 31(1), 426–438. https://doi.org/10.1093/cercor/bhaa234

Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan, K. E., … Gassert, R. (2013). Neurofeedback-mediated self-regulation of the dopaminergic midbrain. NeuroImage, 83, 817–825. https://doi.org/10.1016/j.neuroimage.2013.05.115

Surwillo, W. W. (1961). Frequency of the ‘alpha’ rhythm, reaction time and age. Nature, 191, 823–824. https://doi.org/10.1038/191823a0

Thompson, M., & Thompson, L. (2009). Asperger’s syndrome intervention: Combining neurofeedback, biofeedback and metacognition. In T. H. Budzynski, H. K. Budzynski, J. R. Evans, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (2nd ed., pp. 365–410). Cambridge, MA: Academic Press.

Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. The Journal of Neuroscience, 26(37), 9494–9502. https://doi.org/10.1523/JNEUROSCI.0875-06.2006

Travis, T. A., Kondo, C. Y., & Knott, J. R. (1974). Alpha conditioning, A controlled study. Journal of Nervous and Mental Disease, 158(3), 163–173. https://doi.org/10.1097/00005053-197403000-00001

Tulving, E. (1972). Episodic and semantic memory. In E. Tulving, & W. Donaldson (Eds.), Organization of memory (pp. 381–-402). Cambridge, MA: Academic Press. Retrieved from http://alumni.media.mit.edu/~jorkin/generals/papers/Tulving_memory.pdf

van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. The Journal of Neuroscience, 28(8), 1816–1823. https://doi.org/10.1523/JNEUROSCI.1853-07.2008

Veit, R., Singh, V., Sitaram, R., Caria, A., Rauss, K., & Birbaumer, N. (2012). Using real-time fMRI to learn voluntary regulation of the anterior insula in the presence of threat-related stimuli. Social Cognitive and Affective Neuroscience, 7(6), 623–634. https://doi.org/10.1093/scan/nsr061

Vernon, D., Dempster, T., Bazanova, O. M., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214–227. https://doi.org/10.1080/10874200903334397

Verstraeten, E., & Cluydts, R. (2002). Attentional switching-related human EEG alpha oscillations. NeuroReport, 13(5), 681–684. https://doi.org/10.1097/00001756-200204160-00029

von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38(3), 301–313. https://doi.org/10.1016/s0167-8760(00)00172-0

Williams, J. D., & Gruzelier, J. H. (2001). Differentiation of hypnosis and relaxation by analysis of narrow band theta and alpha frequencies. International Journal of Clinical and Experimental Hypnosis, 49(3), 185–206. https://doi.org/10.1080/00207140108410070

Witte, M., Kober, S. E., Ninaus, M., Neuper, C., & Wood, G. (2013). Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Frontiers in Human Neuroscience, 7, 478. https://doi.org/10.3389/fnhum.2013.00478

Wokke, M. E., & Ro, T. (2019). Competitive frontoparietal interactions mediate implicit inferences. The Journal of Neuroscience, 39(26), 5183–5194. https://doi.org/10.1523/JNEUROSCI.2551-18.2019

Wood, G., Kober, S. E., Witte, M., & Neuper, C. (2014). On the need to better specify the concept of “control” in brain-computer-interfaces/neurofeedback research. Frontiers in Systems Neuroscience, 8, 171. https://doi.org/10.3389/fnsys.2014.00171

Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. The Journal of Neuroscience, 20(6), 1–6. https://doi.org/10.1523/JNEUROSCI.20-06-j0002.2000

Wu, X., & Liu, X. Q. (1995). Study of the alpha frequency band of healthy adults in quantitative EEG. Clinical Electroencephalography, 26(2), 131–136. https://doi.org/10.1177/155005949502600212

Yang, J., & Li, P. (2012). Brain networks of explicit and implicit learning. PLoS ONE, 7(8), e42993. https://doi.org/10.1371/journal.pone.0042993

Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7, 464–476. https://doi.org/10.1038/nrn1919

Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431. https://doi.org/10.1016/j.neuroimage.2010.08.078

Zotev, V., Misaki, M., Phillips, R., Wong, C. K., & Bodurka, J. (2018). Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm. Human Brain Mapping, 39(2), 1024–1042. https://doi.org/10.1002/hbm.23902

Downloads

Published

2021-03-29

Issue

Section

Special Features