Effect of Threshold Setting on Neurofeedback Training
DOI:
https://doi.org/10.15540/nr.7.3.107Keywords:
neurofeedback, rewards, threshold, learning theory, brain waveAbstract
This study aimed to confirm the effect of threshold setting on the performance of neurofeedback training. The experimental conditions used to confirm the effect of the different threshold settings on the degree of electroencephalographic (EEG) changes in the initial training conditions were unfamiliar to neurofeedback. Rewards were presented in low, medium, and high frequency groups according to the different threshold settings. The sensory-motor rhythm (SMR; 12–15 Hz) neurofeedback protocol was performed for all groups. We looked at whether the posttraining brain wave increases were significant in each group compared to the brain waves during training. The SMR protocol was performed in a single session and consisted of four blocks totaling 10 minutes. EEG data was collected before training as a baseline, during training, and posttraining. The results of the group analysis showed that the mean SMR value of the posterior EEG in the high frequency group was significantly higher than the SMR value in the first EEG block. The threshold settings affected learning in neurofeedback training. It was found that initially setting the threshold value for easy compensation was more effective than the setting for hard compensation.
References
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.
Arnold, L. E., Lofthouse, N., Hersch, S., Pan, X., Hurt, E., Bates, B., … Grantier, C. (2012). EEG neurofeedback for ADHD: Double-blind sham-controlled randomized pilot feasibility trial. Journal of Attention Disorders, 17(5), 410–419. https://doi.org/10.1177/1087054712446173
Arns, M., Feddema, I., & Kenemans, J. L. (2014). Differential effects of theta/beta and SMR neurofeedback in ADHD on sleep onset latency. Frontiers in Human Neuroscience, 8, 1019. https://doi.org/10.3389/fnhum.2014.01019
Barea, R., Boquete, L., Mazo, M., & López, E. (2002). System for assisted mobility using eye movements based on electrooculography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 209–218. http://doi.org/10.1109/TNSRE.2002.806829
Bashashati, A., Ward, R. K., Birch, G. E., Hashemi, M. R., & Khalilzadeh, M. A. (2003, September). Fractal dimension-based EEG biofeedback system. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439, Vol. 3, pp. 2220–2223). Cancun, Mexico: IEEE. https://doi.org/10.1109/IEMBS.2003.1280200
Batty, M. J., Bonnington, S., Tang, B.-K., Hawken, M. B., & Gruzelier, J. H. (2006). Relaxation strategies and enhancement of hypnotic susceptibility: EEG neurofeedback, progressive muscle relaxation and self-hypnosis. Brain Research Bulletin, 71(1–3), 83–90. https://doi.org/10.1016/j.brainresbull.2006.08.005
Bauer, R., Fels, M., Royter, V., Raco, V., & Gharabaghi, A. (2016). Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation. Clinical Neurophysiology, 127(9), 3156–3164. https://doi.org/10.1016/j.clinph.2016.06.020
Choe, A. Y., Hwang, S. T., Kim, J. H., Park, K. B., Chey, J. Y., & Hong, H. (2014). Validity of the K-WAIS-IV short forms. Korean Journal of Clinical Psychology, 33(2), 413–428. https://doi.org/10.15842/kjcp.2014.33.2.011
Coben, R., & Evans, J. R. (Eds.). (2010). Neurofeedback and Neuromodulation Techniques and Applications. Cambridge, MA: Academic Press.
Collura, T. F. (1999). U.S. Patent No. 5,899,867. Washington, DC: U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/3a/9c/a0/3f87c3cb979c35/US5899867.pdf
Collura, T. F. (2007). U.S. Patent No. 7,269,456. Washington, DC: U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/f9/30/53/f7bdf0a23396e3/US7269456B2.pdf
Cortoos, A., De Valck, E., Arns, M., Breteler, M. H. M., & Cluydts, R. (2010). An exploratory study on the effects of tele-neurofeedback and tele-biofeedback on objective and subjective sleep in patients with primary insomnia. Applied Psychophysiology and Biofeedback, 35(2), 125–134. https://doi.org/10.1007/s10484-009-9116-z
Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36(2), 285–298. https://doi.org/10.1016/S0896-6273(02)00963-7
Demos, J. N. (2005). Getting started with neurofeedback. New York, NY: W. W. Norton & Company.
Doppelmayr, M., & Weber, E. (2011). Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity. Journal of Neurotherapy, 15(2), 115–129. https://doi.org/10.1080/10874208.2011.570689
Dunn, L. B., Holtzheimer, P. E., Hoop, J. G., Mayberg, H. S., Roberts, L. W., & Appelbaum, P. S. (2011). Ethical issues in deep brain stimulation research for treatment-resistant depression: Focus on risk and consent. AJOB Neuroscience, 2(1), 29–36. https://doi.org/10.1080/21507740.2010.533638
Egner, T., & Gruzelier, J. H. (2003). Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. NeuroReport, 14(9), 1221–1224. https://doi.org/10.1097/01.wnr.0000081875.45938.d1
Egner, T., Zech, T. F., & Gruzelier, J. H. (2004). The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology, 115(11), 2452–2460. https://doi.org/10.1016/j.clinph.2004.05.033
Gilbert, C., & Moss, D. (2003). Biofeedback and biological monitoring. In D. Moss, A. McGrady, T. Davies, & I. Wickramaskera (Eds.), Handbook of mind-body medicine in primary care: behavioral and physiological tools (pp. 109–122). Thousand Oaks, CA: Sage.
Good, C. D., Johnsrude, I., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage, 14(3), 685–700. https://doi.org/10.1006/nimg.2001.0857
Gottlieb, D. A. (2004). Acquisition with partial and continuous reinforcement in pigeon autoshaping. Animal Learning & Behavior, 32(3), 321–334. https://doi.org/10.3758/BF03196031
Grice, G. R. (1948). The relation of secondary reinforcement to delayed reward in visual discrimination learning. Journal of Experimental Psychology, 38(1), 1–16. https://doi.org/10.1037/h0061016
Gruzelier, J. H. (2014a). Differential effects on mood of 12–15 (SMR) and 15–18 (beta1) Hz neurofeedback. International Journal of Psychophysiology, 93(1), 112–115. https://doi.org/10.1016/j.ijpsycho.2012.11.007
Gruzelier, J. H. (2014b). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience & Biobehavioral Reviews, 44, 159–182. https://doi.org/10.1016/j.neubiorev.2014.03.015
Gruzelier, J., Inoue, A., Smart, R., Steed, A., & Steffert, T. (2010). Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neuroscience Letters, 480(2), 112–116. https://doi.org/10.1016/j.neulet.2010.06.019
Gupta, R. K., Afsar, M., Yadav, R. K., Shukla, D. P., & Rajeswaran, J. (2020). Effect of EEG neurofeedback training in patients with moderate–severe traumatic brain injury: A clinical and electrophysiological outcome study. NeuroRegulation, 7(2), 75–83. https://doi.org/10.15540/nr.7.2.75
Hammond, D. C. (2003). The effects of caffeine on the brain: A review. Journal of Neurotherapy, 7(2), 79–89. https://doi.org/10.1300/J184v07n02_07
Hammond, D. C. (2007). What is neurofeedback? Journal of Neurotherapy, 10(4), 25–36. https://doi.org/10.1300/J184v10n04_04
Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305–336. https://doi.org/10.1080/10874208.2011.623090
Hardt, J. V., & Kamiya, J. (1976). Conflicting results in EEG alpha feedback studies. Biofeedback and Self-regulation, 1(1), 63–75. https://doi.org/10.1007/BF00998691
Hill, R. W., & Castro, E. (2009). Healing young brains: The neurofeedback solution. Charlottesville, VA: Hampton Roads Publishing.
Jindal, S. (2013, April). Real time embedded system for biofeedback. In Proceedings of the National Conference on Recent Trends in Operations Research (pp. 142–144). New Delhi, India: Amity School of Engineering & Technology. Retrieved from https://www.researchgate.net/profile/Naman_Taneja/publication/275657904_Assertion_of_Purity_Quality_and_Availability_of_Ice_Cream/links/5543ceb40cf23ff7168523b3.pdf - page=153
Konidaris, G., & Barto, A. (2006). Autonomous shaping: Knowledge transfer in reinforcement learning. In Proceedings of the 23rd International Conference on Machine Learning (pp. 489–496). New York, NY: Association for Computing Machinery. https://doi.org/10.1145/1143844.1143906
LaVaque, T. J. (2003). Neurofeedback, neurotherapy, and quantitative EEG. In D. Moss & A. McGrady (Eds.), Handbook of mind-body medicine for primary care, (pp. 123–136). Thousand Oaks, CA: Sage.
Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O'Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in TOVA scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-regulation, 20(1), 83–99. https://doi.org/10.1007/BF01712768
Miltenberger, R. G. (2011). Behavior modification: Principles and procedures (5th ed.). Belmont, CA: Wadsworth.
Morales-Quezada, L., Martinez, D., El-Hagrassy, M. M., Kaptchuk, T. J., Sterman, M. B., & Yeh, G. Y. (2019). Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. Epilepsy & Behavior, 101, 106570. https://doi.org/10.1016/j.yebeh.2019.106570
Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. https://doi.org/10.1016/j.paid.2012.11.037
Okello, E. J., Abadi, A. M., & Abadi, S. A. (2016). Effects of green and black tea consumption on brain wave activities in healthy volunteers as measured by a simplified electroencephalogram (EEG): A feasibility study. Nutritional Neuroscience, 19(5), 196–205. https://doi.org/10.1179/1476830515Y.0000000008
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. Retrieved from http://andersgade.dk/Readings/Oldfield1971.pdf
Ossadtchi, A., Shamaeva, T., Okorokova, E., Moiseeva, V., & Lebedev, M. A. (2017). Neurofeedback learning modifies the incidence rate of alpha spindles, but not their duration and amplitude. Scientific Reports, 7(1), 3772. https://doi.org/10.1038/s41598-017-04012-0
Pacheco, B. (2011). SMR neurofeedback training for cognitive enhancement: The mediating effect of SMR baseline levels (Doctoral dissertation, Anglia Ruskin University). Retrieved from http://arro.anglia.ac.uk/id/eprint/294451
Rasey, H., Lubar, J. F., McIntyre, A., Zoffuto, A., & Abbott, P. L. (1995). EEG biofeedback for the enhancement of attentional processing in normal college students. Journal of Neurotherapy, 1(3), 15–21. https://doi.org/10.1300/J184v01n03_03
Redwood, D. (2000). Essentials of complementary and alternative medicine. The Journal of Alternative and Complementary Medicine, 6(3), 291–294. https://doi.org/10.1089/acm.2000.6.291
Reynolds, W. F. (1958). Acquisition and extinction of the conditioned eyelid response following partial and continuous reinforcement. Journal of Experimental Psychology, 55(4), 335–341. https://doi.org/10.1037/h0042202
Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10(1), 87. https://doi.org/10.1186/1471-2202-10-87
Ros, T., Théberge, J., Frewen, P. A., Kluetsch, R., Densmore, M., Calhoun, V. D., & Lanius, R. A. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage, 65, 324–335. https://doi.org/10.1016/j.neuroimage.2012.09.046
Roy, R., de la Vega, R., Jensen, M. P., & Miró, J. (2020). Neurofeedback for pain management: A systematic review. Frontiers in Neuroscience, 14, 671. https://doi.org/10.3389/fnins.2020.00671
Schwartz, M. S., & Andrasik, F. (Eds.). (2017). Biofeedback: A practitioner's guide (4th ed.). New York, NY: Guilford Publications.
Shaker, M. M. (2007). EEG waves classifier using wavelet transform and Fourier transform. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 1(3), 169¬–174. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.823.5433&rep=rep1&type=pdf
Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy, 15(4), 292–304. https://doi.org/10.1080/10874208.2011.623089
Sime, A. (2004). Case study of trigeminal neuralgia using neurofeedback and peripheral biofeedback. Journal of Neurotherapy, 8(1), 59–71. https://doi.org/10.1300/J184v08n01_05
Simkin, D. R., Thatcher, R. W., & Lubar, J. (2014). Quantitative EEG and neurofeedback in children and adolescents: Anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury. Child and Adolescent Psychiatric Clinics of North America, 23(3), 427–464. https://doi.org/10.1016/j.chc.2014.03.001
Skinner, B. F. (1953). Science and human behavior. New York: NY: Simon and Schuster.
Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35. https://doi.org/10.1007/s10484-006-9002-x
Strehl, U. (2014). What learning theories can teach us in designing neurofeedback treatments. Frontiers in Human Neuroscience, 8, 894. https://doi.org/10.3389/fnhum.2014.00894
Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari, M. L., ... Sitaram, R. (2013). Real-time fMRI neurofeedback: Progress and challenges. NeuroImage, 76(1), 386–399. https://doi.org/10.1016/j.neuroimage.2013.03.033
Terborg, J. R., & Miller, H. E. (1978). Motivation, behavior, and performance: A closer examination of goal setting and monetary incentives. Journal of Applied Psychology, 63(1), 29–39. https://doi.org/10.1037/0021-9010.63.1.29
Thompson, L., & Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD. Applied Psychophysiology and Biofeedback, 23(4), 243–263. https://doi.org/10.1023/A:1022213731956
Vernon, D., Dempster, T., Bazanova, O., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214–227. https://doi.org/10.1080/10874200903334397
Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., & Gruzelier, J. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 75–85. https://doi.org/10.1016/S0167-8760(02)00091-0
Wagner, A. R. (1961). Effects of amount and percentage of reinforcement and number of acquisition trials on conditioning and extinction. Journal of Experimental Psychology, 62(3), 234–242. https://doi.org/10.1037/h0042251
Watanabe, T., Sasaki, Y., Shibata, K., & Kawato, M. (2017). Advances in fMRI real-time neurofeedback. Trends in Cognitive Sciences, 21(12), 997–1010. https://doi.org/10.1016/j.tics.2017.09.010
Weber, L. A., Ethofer, T., & Ehlis, A.-C. (2020). Predictors of neurofeedback training outcome: A systematic review. NeuroImage: Clinical, 27, 102301. https://doi.org/10.1016/j.nicl.2020.102301
Xiang, M.-Q., Hou, X.-H., Liao, B.-G., Liao, J.-W., & Hu, M. (2018). The effect of neurofeedback training for sport performance in athletes: A meta-analysis. Psychology of Sport and Exercise, 36, 114–122. https://doi.org/10.1016/j.psychsport.2018.02.004
Yoo, S.-S., O'Leary, H. M., Fairneny, T., Chen, N.-K., Panych, L. P., Park, H., & Jolesz, F. A. (2006). Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. NeuroReport, 17(12), 1273–1278. https://doi.org/10.1097/01.wnr.0000227996.53540.22
Young, K. D., Zotev, V., Phillips, R., Misaki, M., Yuan, H., Drevets, W. C., & Bodurka, J. (2014). Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PLoS ONE, 9(2), e88785. https://doi.org/10.1371/journal.pone.0088785
Yuan, C.-S., & Bieber, E. J. (Eds.). (2003). Textbook of complementary and alternative medicine. New York, NY: Parthenon Publishing/CRC Press.
Yucha, C., & Montgomery, D. (Eds.). (2008). Evidence-based practice in biofeedback and neurofeedback (2nd ed.). Wheat Ridge, CO: Association for Applied Psychophysiology and Biofeedback.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).