An Artistic Approach to Neurofeedback for Emotion Regulation
DOI:
https://doi.org/10.15540/nr.7.2.84Keywords:
neurofeedback, emotion, artAbstract
While literature has suggested that neurofeedback performance improves when sensory feedback is related to the pathology under consideration, it is still difficult to represent a proper feedback representative of our emotional state. In this study, we have initiated a collaboration between neuroscientists and artists to develop a visual representation of emotions. Emotions were represented as particles moving in a white sphere according to valence and arousal levels. Several possibilities for particle control were explored: direction of particles, their concentration in a specific place, or their gravity. Participants were asked to evaluate these possibilities on scales ranging from 0 to 5 on how artistic the different representations were and could be used as a clinical activity, whether they thought they had successfully controlled the particles during the neurofeedback exercise, and whether they had appreciated the experience. We found that controlling the direction and concentration of particles was considered the most artistic, with an average score around 3 out of 5, and that 47% of the 107 participants considered the concentration of particles as artistic. In addition, we found that participants could significantly control the direction of particles during this session. Our approach constitutes a first step before evaluating the effectiveness of our emotional neurofeedback over several sessions.
References
Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neuroscience Letters, 310(1), 57–60. https://doi.org/10.1016/s0304-3940(01)02094-8
Arjmand, H.-A., Hohagen, J., Paton, B., & Rickard, N. S. (2017). Emotional responses to music: Shifts in frontal brain asymmetry mark periods of musical change. Frontiers in Psychology, 8, 2044. https://doi.org/10.3389/fpsyg.2017.02044
Arns, M., Batail, J.-M., Bioulac, S., Congedo, M., Daudet, C., Drapier, D., … The NExT group. (2017). Neurofeedback: One of today’s techniques in psychiatry? L’Encéphale, 43(2), 135–145. https://doi.org/10.1016/j.encep.2016.11.003
Arns, M., Heinrich, H., & Strehl, U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. Biological Psychology, 95, 108–115. https://doi.org/10.1016/j.biopsycho.2013.11.013
Baehr, E., & Baehr, R. (1997). The use of brainwave biofeedback as an adjunctive therapeutic treatment for depression: Three case studies. Biofeedback, 25(1), 10–11.
Baehr, E., Rosenfeld, J. P., & Baehr, R. (1997). The clinical use of an alpha asymmetry protocol in the neurofeedback treatment of depression: Two case studies. Journal of Neurotherapy, 2, 10–23. https://doi.org/10.1300/J184v02n03_02
Bagdasaryan, J., & Quyen, M. L. V. (2013). Experiencing your brain: Neurofeedback as a new bridge between neuroscience and phenomenology. Frontiers in Human Neuroscience, 7, 680. https://doi.org/10.3389/fnhum.2013.00680
Bandura, A. (1999). Moral disengagement in the perpetration of inhumanities. Personality and Social Psychology Review, 3(3), 193–209. https://doi.org/10.1207/s15327957pspr0303_3
Bayliss, J. D., Inverso, S. A., & Tentler, A. (2004). Changing the P300 brain computer interface. CyberPsychology & Behavior, 7(6), 694–704. https://doi.org/10.1089/cpb.2004.7.694
Caria, A., Sitaram, R., Veit, R., Begliomini, C., & Birbaumer, N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry, 68(5), 425–432. https://doi.org/10.1016/j.biopsych.2010.04.020
Caria, A., Veit, R., Sitaram, R., Lotze, M., Weiskopf, N., Grodd, W., & Birbaumer, N. (2007). Regulation of anterior insular cortex activity using real-time fMRI. NeuroImage, 35(3), 1238–1246. https://doi.org/10.1016/j.neuroimage.2007.01.018
Cavazza, M., Aranyi, G., Charles, F., Porteous, J., Gilroy, S., Klovatch, I., … Hendler, T. (2014). Towards empathic neurofeedback for interactive storytelling. Open Access Series in Informatics, 42–60.
Choi, S. W., Chi, S. E., Chung, S. Y., Kim, J. W., Ahn, C. Y., & Kim, H. T. (2011). Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology, 63(1), 43–51. https://doi.org/10.1159/000322290
Coan, J. A., & Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1–2), 7–50. https://doi.org/10.1016/j.biopsycho.2004.03.002
Cook, I. A., O’Hara, R., Uijtdehaage, S. H. J., Mandelkern, M., & Leuchter, A. F. (1998). Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalography and Clinical Neurophysiology, 107(6), 408–414. https://doi.org/10.1016/s0013-4694(98)00092-3
Cunningham, W. A., Arbuckle, N. L., Jahn, A., Mowrer, S. M., & Abduljalil, A. M. (2010). Aspects of neuroticism and the amygdala: Chronic tuning from motivational styles. Neuropsychologia, 48(12), 3399–3404. https://doi.org/10.1016/j.neuropsychologia.2010.06.026
Cunningham, W. A., Raye, C. L., & Johnson, M. K. (2005). Neural
correlates of evaluation associated with promotion and prevention regulatory focus. Cognitive, Affective, & Behavioral Neuroscience, 5(2), 202–211. https://doi.org/10.3758/CABN.5.2.202
Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39(1–2), 71–89. https://doi.org/10.3109/00207458808985694
Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition, 20(1), 125–151. https://doi.org/10.1016/0278-2626(92)90065-T
Davidson, R. J. (1998). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35(5), 607–614. https://doi.org/10.1017/s0048577298000134
Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology: I. Journal of Personality and Social Psychology, 58(2), 330–341. https://doi.org/10.1037/0022-3514.58.2.330
deCharms, R. C. (2008). Applications of real-time fMRI. Nature Reviews Neuroscience, 9(9), 720–729. https://doi.org/10.1038/nrn2414
Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., … Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 1375–1380. https://doi.org/10.1016/j.cub.2017.04.002
Ertl, M., Hildebrandt, M., Ourina, K., Leicht, G., & Mulert, C. (2013). Emotion regulation by cognitive reappraisal—The role of frontal theta oscillations. NeuroImage, 81, 412–421. https://doi.org/10.1016/j.neuroimage.2013.05.044
Gaume, A., Vialatte, A., Mora-Sánchez, A., Ramdani, C., & Vialatte, F. B. (2016). A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neuroscience & Biobehavioral Reviews, 68, 891–910. https://doi.org/10.1016/j.neubiorev.2016.06.012
Grandchamp, R., & Delorme, A. (2016). The brainarium: An interactive immersive tool for brain education, art, and neurotherapy. Computational Intelligence and Neuroscience, 4204385. https://doi.org/10.1155/2016/4204385
Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews, 44, 124–141. https://doi.org/10.1016/j.neubiorev.2013.09.015
Gruzelier, J. H. (2018). Enhancing creativity with neurofeedback in the performing arts: Actors, musicians, dancers. In S. Burgoyne (Eds.), Creativity in theatre. Creativity theory and action in education (Vol. 2). New York, NY: Springer.
Harmon-Jones, E., & Gable, P. A. (2018). On the role of asymmetric frontal cortical activity in approach and withdrawal motivation: An updated review of the evidence. Psychophysiology, 55(1), e12879. https://doi.org/10.1111/psyp.12879
Kinreich, S., Podlipsky, I., Jamshy, S., Intrator, N., & Hendler, T. (2014). Neural dynamics necessary and sufficient for transition into pre-sleep induced by EEG neurofeedback. NeuroImage, 97, 19–28. https://doi.org/10.1016/j.neuroimage.2014.04.044
Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., … Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral Cortex, 27(2), 1193–1202. https://doi.org/10.1093/cercor/bhv311
Kovacevic, N., Ritter, P., Tays, W., Moreno, S., & McIntosh, A. R. (2015). "My Virtual Dream": Collective neurofeedback in an immersive art environment. PLoS ONE, 10(7), e0130129. https://doi.org/10.1371/journal.pone.0130129
Linden, D. (2013). Biological psychiatry: Time for new paradigms. The British Journal of Psychiatry, 202(3), 166–167. https://doi.org/10.1192/bjp.bp.112.121269
Linden, D. E. J. (2014). Neurofeedback and networks of depression. Dialogues in Clinical Neuroscience, 16(1), 103–112.
Linhartová, P., Látalová, A., Kóša, B., Kašpárek, T., Schmahl, C., & Paret, C. (2019). fMRI neurofeedback in emotion regulation: A literature review. NeuroImage, 193, 75–92. https://doi.org/10.1016/j.neuroimage.2019.03.011
Lorenzetti, V., Melo, B., Basílio, R., Suo, C., Yücel, M., Tierra-Criollo, C. J., & Moll, J. (2018). Emotion regulation using virtual environments and real-time fMRI neurofeedback. Frontiers in Neurology, 9, 390. https://doi.org/10.3389/fneur.2018.00390
Lubianiker, N., Goldway, N., Fruchtman-Steinbok, T., Paret, C., Keynan, J. N., Singer, N., … Hendler, T. (2019). Process-based framework for precise neuromodulation. Nature Human Behaviour, 3(5), 436–445. https://doi.org/10.1038/s41562-019-0573-y
Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143–158. https://doi.org/10.15412/J.BCN.03070208
Meir-Hasson, Y., Kinreich, S., Podlipsky, I., Hendler, T., & Intrator, N. (2014). An EEG finger-print of fMRI deep regional activation. NeuroImage, 102(1), 128–141. https://doi.org/10.1016/j.neuroimage.2013.11.004
Micoulaud-Franchi, J.-A., & Fovet, T. (2016). Neurofeedback: Time needed for a promising non-pharmacological therapeutic method. The Lancet Psychiatry, 3(9), e16. https://doi.org/10.1016/S2215-0366(16)30189-4
Micoulaud-Franchi, J.-A., & Fovet, T. (2018). A framework for disentangling the hyperbolic truth of neurofeedback: Comment on Thibault and Raz (2017). The American Psychologist, 73(7), 933–935. https://doi.org/10.1037/amp0000340
Micoulaud-Franchi, J.-A., McGonigal, A., Lopez, R., Daudet, C., Kotwas, I., & Bartolomei, F. (2015). Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. Neurophysiologie Clinique/Clinical Neurophysiology, 45(6), 423–433. https://doi.org/10.1016/j.neucli.2015.10.077
Oude Bos, D., & Reuderink, B. (2008). BrainBasher: A BCI game. In Extended Abstracts of the International Conference on Fun and Games 2008, Eindhoven, Netherlands (pp. 36–39). Einhoven, Netherlands: Eindhoven University of Technology.
Papousek, I., Weiss, E. M., Schulter, G., Fink, A., Reiser, E. M., & Lackner, H. K. (2014). Prefrontal EEG alpha asymmetry changes while observing disaster happening to other people: Cardiac correlates and prediction of emotional impact. Biological Psychology, 103, 184–194. https://doi.org/10.1016/j.biopsycho.2014.09.001
Paquette, V., Beauregard, M., & Beaulieu-Prévost, D. (2009). Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder. Psychiatry Research: Neuroimaging, 174(3), 231–239. https://doi.org/10.1016/j.pscychresns.2009.06.002
Paret, C., Goldway, N., Zich, C., Keynan, J. N., Hendler, T., Linden, D., & Cohen Kadosh, K. (2019). Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements. NeuroImage, 202, 116107. https://doi.org/10.1016/j.neuroimage.2019.116107
Peeters, F., Oehlen, M., Ronner, J., van Os, J., & Lousberg, R. (2014). Neurofeedback as a treatment for major depressive disorder—A pilot study. PLoS ONE, 9(3), e91837. https://doi.org/10.1371/journal.pone.0091837
Pizzagalli, D. A., Nitschke, J. B., Oakes, T. R., Hendrick, A. M., Horras, K. A., Larson, C. L., … Davidson, R. J. (2002). Brain electrical tomography in depression: The importance of symptom severity, anxiety, and melancholic features. Biological Psychiatry, 52(2), 73–85. https://doi.org/10.1016/s0006-3223(02)01313-6
Ramirez, R., Palencia-Lefler, M., Giraldo, S., & Vamvakousis, Z. (2015). Musical neurofeedback for treating depression in elderly people. Frontiers in Neuroscience, 9, 354. https://doi.org/10.3389/fnins.2015.00354
Ramirez, R., & Vamvakousis, Z. (2012). Detecting emotion from EEG signals using the emotive epoc device. Proceedings of the 2012 International Conference on Brain Informatics, LNCS 7670, 175–184.
Ruiz, S., Lee, S., Soekadar, S. R., Caria, A., Veit, R., Kircher, T., … Sitaram, R. (2013). Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Human Brain Mapping, 34(1), 200–212. https://doi.org/10.1002/hbm.21427
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178. https://doi.org/10.1037/h0077714
Schlund, M. W., & Cataldo, M. F. (2010). Amygdala involvement in human avoidance, escape and approach behavior. NeuroImage, 53(2), 769–776. https://doi.org/10.1016/j.neuroimage.2010.06.058
Shtark, M. B., Verevkin, E. G., Kozlova, L. I., Mazhirina, K. G., Pokrovskii, M. A., Petrovskii, E. D., … Yarosh, S. V. (2015). Synergetic fMRI-EEG brain mapping in alpha-rhythm voluntary control mode. Bulletin of Experimental Biology and Medicine, 158(5), 644–649. https://doi.org/10.1007/s10517-015-2827-7
Spielberg, J. M., Miller, G. A., Warren, S. L., Engels, A. S., Crocker, L. D., Banich, M. T., … Heller, W. (2012). A brain network instantiating approach and avoidance motivation. Psychophysiology, 49(9), 1200–1214. https://doi.org/10.1111/j.1469-8986.2012.01443.x
Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari, M. L., … Sitaram, R. (2013). Real-time fMRI neurofeedback: Progress and challenges. NeuroImage, 76, 386–399. https://doi.org/10.1016/j.neuroimage.2013.03.033
Sutton, S. K., & Davidson, R. J. (1997). Prefrontal brain asymmetry: A biological substrate of the behavioral approach and inhibition systems. Psychological Science, 8(3), 204–210. https://doi.org/10.1111/j.1467-9280.1997.tb00413.x
Thibault, R. T., & Raz, A. (2016). When can neurofeedback join the clinical armamentarium? The Lancet Psychiatry, 3(6), 497–498. https://doi.org/10.1016/S2215-0366(16)30040-2
Thibault, R. T., & Raz, A. (2017). The psychology of neurofeedback: Clinical intervention even if applied placebo. The American Psychologist, 72(7), 679–688. https://doi.org/10.1037/amp0000118
Thomsen, K. R. (2015). Measuring anhedonia: Impaired ability to pursue, experience, and learn about reward. Frontiers in Psychology, 6, 1409. https://doi.org/10.3389/fpsyg.2015.01409
Weiskopf, N. (2012). Real-time fMRI and its application to neurofeedback. NeuroImage, 62(2), 682–692. https://doi.org/10.1016/j.neuroimage.2011.10.009
Weiskopf, N., Scharnowski, F., Veit, R., Goebel, R., Birbaumer, N., & Mathiak, K. (2004). Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). Journal of Physiology-Paris, 98(4–6), 357–373. https://doi.org/10.1016/j.jphysparis.2005.09.019
Wheeler, R. E., Davidson, R. J., & Tomarken, A. J. (1993). Frontal brain asymmetry and emotional reactivity: A biological substrate of affective style. Psychophysiology, 30(1), 82–89. https://doi.org/10.1111/j.1469-8986.1993.tb03207.x
Young, K. D., Zotev, V., Phillips, R., Misaki, M., Yuan, H., Drevets, W. C., & Bodurka, J. (2014). Real-time fMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PLoS ONE, 9(2), e88785. https://doi.org/10.1371/journal.pone.0088785
Yuan, H., Young, K. D., Phillips, R., Zotev, V., Misaki, M., & Bodurka, J. (2014). Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. Brain Connectivity, 4(9), 690–701. https://doi.org/10.1089/brain.2014.0262
Zhang, J., Jadavji, Z., Zewdie, E., & Kirton, A. (2019). Evaluating if children can use simple brain computer interfaces. Frontiers in Human Neuroscience, 13, 24. https://doi.org/10.3389/fnhum.2019.00024
Zich, C., Debener, S., Kranczioch, C., Bleichner, M. G., Gutberlet, I., & De Vos, M. (2015). Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery. NeuroImage, 114, 438–447. https://doi.org/10.1016/j.neuroimage.2015.04.020
Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan, P., … Bodurka, J. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS ONE, 6(9), e24522. https://doi.org/10.1371/journal.pone.0024522
Zotev, V., Phillips, R., Young, K. D., Drevets, W. C., & Bodurka, J. (2013). Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. PLoS ONE, 8(11), e79184. https://doi.org/10.1371/journal.pone.0079184
Zotev, V., Yuan, H., Misaki, M., Phillips, R., Young, K. D., Feldner, M. T., & Bodurka, J. (2016). Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. NeuroImage: Clinical, 11, 224–238. https://doi.org/10.1016/j.nicl.2016.02.003
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).