Neurocognitive Enhancement: Applications and Ethical Issues

Authors

  • Giulia Fronda Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy; Research Unit in Affective and Social Neuroscience, Milan, Italy
  • Davide Crivelli Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy; Research Unit in Affective and Social Neuroscience, Milan, Italy
  • Michela Balconi Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy; Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy

DOI:

https://doi.org/10.15540/nr.6.3.161

Keywords:

neuroethics, neurocognitive enhancement, peak performance, wearable devices, sports

Abstract

In recent years, the interest in neurocognitive empowerment has increased, thus making it a hot topic, especially because of possible ethical implications.  Specifically, the term neurocognitive empowerment refers to the use of different neuroscientific techniques and tools that increase the cognitive functioning of the individual beyond the normal threshold—on the one hand, improving functions such as attention, perception, and memory—and, on the other hand, physical and motor functions.  Neuroethics is peculiarly interested in monitoring and discussing ethical implications and possible consequences or undesirable effects of neurocognitive strengthening techniques.  In particular, the use of different tools for neurocognitive enhancement requires an in-depth analysis of the ethical and legal principles in terms of security and social justice that allow the improvement of mental and physical functions of an individual.  The present work aims at introducing the use of specific techniques—such as neurofeedback devices for the enhancement of attention regulation skill—in specific application contexts; that is, sports in which athletes are continuously subjected to external pressures for performance and constant improvement.  Furthermore, this document explores possible ethical critical issues raised by such use of neurocognitive enhancement techniques.

References

Agar, N. (2013). Truly human enhancement: A philosophical defense of limits. Cambridge, MA: MIT Press.

Alexeeva, M. V., Balios, N. V., Muravlyova, K. B., Sapina, E. V, & Bazanova, O. M. (2012). Training for voluntarily increasing individual upper alpha power as a method for cognitive enhancement. Human Physiology, 38(1), 40–48. https://doi.org/10.1134/S0362119711060028

Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., … Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101. https://doi.org/10.1038/nature12486

Antal, A., Nitsche, M. A., Kincses, T. Z., Kruse, W., Hoffmann, K.-P., & Paulus, W. (2004). Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 19(10), 2888–2892. https://doi.org/10.1111/j.1460-9568.2004.03367.x

Balconi, M., Fronda, G., & Crivelli, D. (2018). Effects of technology-mediated mindfulness practice on stress: Psychophysiological and self-report measures. Stress, 22(2), 200–209. https://doi.org/10.1080/10253890.2018.1531845

Balconi, M., Fronda, G., Venturella, I., & Crivelli, D. (2017). Conscious, pre-conscious and unconscious mechanisms in emotional behaviour. Some applications to the mindfulness approach with wearable devices. Applied Sciences, 7(12), 1280. https://doi.org/10.3390/app7121280

Balconi, M., Pala, F., Crivelli, D., & Milone, V. (2019). From investigation to intervention. Biofeedback and neurofeedback biomarkers in sport. In R. Carlstedt & M. Balconi (Eds.), Handbook of Sport Neuroscience and Psychophysiology (pp. 151–168). New York, NY: Routledge.

Bell, M., Bryson, G., Greig, T., Corcoran, C., & Wexler, B. E. (2001). Neurocognitive enhancement therapy with work therapy: Effects on neuropsychological test performance. Archives of General Psychiatry, 58(8), 763–768. https://doi.org/10.1001/archpsyc.58.8.763

Bell, S., Partridge, B., Lucke, J., & Hall, W. (2013). Australian university students’ attitudes towards the acceptability and regulation of pharmaceuticals to improve academic performance. Neuroethics, 6(1), 197–205. https://doi.org/10.1007/s12152-012-9153-9

Borducchi, D. M. M., Gomes, J. S., Akiba, H., Cordeiro, Q., Borducchi, J. H. M., Valentin, L. S. S., ... Dias, Á. M. (2016). Transcranial direct current stimulation effects on athletes’ cognitive performance: An exploratory proof of concept trial. Frontiers in Psychiatry, 7, 183. https://doi.org/10.3389/fpsyt.2016.00183

Bostrom, N., & Roache, R. (2011). Smart policy: Cognitive enhancement and the public interest. In J. Savulescu, R. ter Muelen, & G. Kahane (Eds.), Enhancing Human Capacities (pp. 138–152). Oxford, UK: Wiley-Blackwell.

Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15(3), 311–341. https://doi.org/10.1007/s11948-009-9142-5

Butcher, J. (2003). Cognitive enhancement raises ethical concerns. The Lancet, 362(9378), 132–133. https://doi.org/10.1016/s0140-6736(03)13897-4

Chapman, S. B., Aslan, S., Spence, J. S., DeFina, L. F., Keebler, M. W., Didehbani, N., & Lu, H. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Frontiers in Aging Neuroscience, 5, 75. https://doi.org/10.3389/fnagi.2013.00075

Chatterjee, A. (2004). Prospects for a cognitive neuroscience of visual aesthetics. Bulletin of Psychology and the Arts, 4(2), 55–60. https://doi.org/10.1037/e514602010-003

Cohen Kadosh, K., Johnson, M. H., Dick, F., Cohen Kadosh, R., & Blakemore, S. J. (2013). Effects of age, task performance, and structural brain development on face processing. Cerebral Cortex, 23(7), 1630–1642. https://doi.org/10.1093/cercor/bhs150

Colzato, L. S., Nitsche, M. A., & Kibele, A. (2017). Noninvasive Brain Stimulation and Neural Entrainment Enhance Athletic Performance—a Review. Journal of Cognitive Enhancement, 1(1), 73–79. https://doi.org/10.1007/s41465-016-0003-2

Crews, D. J., & Landers, D. M. (1993). Electroencephalographic measures of attentional patterns prior to the golf putt. Medicine and Science in Sports and Exercise, 25(1), 116–126. https://doi.org/10.1249/00005768-199301000-00016

Crivelli, D., Fronda, G., Venturella, I., & Balconi, M. (2019). Supporting mindfulness practices with brain-sensing devices. Cognitive and electrophysiological evidences. Mindfulness, 10(2), 301–311. https://doi.org/10.1007/s12671-018-0975-3

Curry, L. A., & Wagman, D. F. (2011). Qualitative description of the prevalence and use of anabolic androgenic steroids by united states powerlifters. Perceptual and Motor Skills, 88(1), 224–233. https://doi.org/10.2466/pms.1999.88.1.224

Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730. https://doi.org/10.1037/a0014296

Davis, N. J. (2013). Neurodoping: Brain stimulation as a performance-enhancing measure. Sports Medicine, 43(8), 649–653. https://doi.org/10.1007/s40279-013-0027-z

Dodge, T., Williams, K. J., Marzell, M., & Turrisi, R. (2012). Judging cheaters: Is substance misuse viewed similarly in the athletic and academic domains? Psychology of Addictive Behaviors, 26(3), 678–682. https://doi.org/10.1037/a0027872

Engvig, A., Fjell, A. M., Westlye, L. T., Skaane, N. V., Sundseth, Ø., & Walhovd, K. B. (2012). Hippocampal subfield volumes correlate with memory training benefit in subjective memory impairment. NeuroImage, 61(1), 188–194. https://doi.org/10.1016/j.neuroimage.2012.02.072

Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2013). Boosting brain functions: Improving executive functions with behavioral training, neurostimulation, and neurofeedback. International Journal of Psychophysiology, 88(1), 1–16. https://doi.org/10.1016/j.ijpsycho.2013.02.001

Farah, M. J. (2005). Neuroethics: The practical and the philosophical. Trends in Cognitive Sciences, 9(1), 34–40. https://doi.org/10.1016/j.tics.2004.12.001

Farah, M. J., Illes, J., Cook-Deegan, R., Gardner, H., Kandel, E., King, P., … Wolpe, P. R. (2004). Neurocognitive enhancement: What can we do and what should we do? Nature Reviews Neuroscience, 5(5), 421. https://doi.org/10.1038/nrn1390

Flöel, A., Meinzer, M., Kirstein, R., Nijhof, S., Deppe, M., Knecht, S., & Breitenstein, C. (2011). Short-term anomia training and electrical brain stimulation. Stroke, 42(7), 2065–2067. https://doi.org/10.1161/STROKEAHA.110.609032

Fronda, G., Balconi, M., & Crivelli, D. (2018). Neuroethical implications of neurocognitive enhancement in managerial professional contexts. Journal of Cognitive Enhancement, 2(4), 356–363. https://doi.org/10.1007/s41465-018-0100-5

Fuchs, T. (2006). Ethical issues in neuroscience. Current Opinion in Psychiatry, 2(4), 356–363. https://doi.org/10.1097/01.yco.0000245752.75879.26

Grosprêtre, S., Ruffino, C., & Lebon, F. (2016). Motor imagery and cortico-spinal excitability: A review. European Journal of Sport Science, 16(3), 317–324. https://doi.org/10.1080/17461391.2015.1024756

Hammond, D. C. (2007). Neurofeedback for the enhancement of athletic performance and physical balance. The Journal of the American Board of Sport Psychology, 1(1), 1¬¬¬¬¬–9.

Harvey, J. C. (2008). Enhancing evolution: The ethical case for making better people. JAMA, 299(11), 1369–1370. https://doi.org/10.1001/jama.299.11.1369

Haufler, A. J., Spalding, T. W., Santa Maria, D. L., & Hatfield, B. D. (2000). Neuro-cognitive activity during a self-paced visuospatial task: Comparative EEG profiles in marksmen and novice shooters. Biological Psychology, 53(2–3), 131–160. https://doi.org/10.1016/S0301-0511(00)00047-8

Hung, T. M., & Cheng, M.-Y. (2018). Neurofeedback in sport: Theory, methods, research, and efficacy. In R. Carlstedt & M. Balconi (Eds.), Handbook of Sport Neuroscience and Psychophysiology (pp. 304–319). New York, NY: Routledge. https://doi.org/10.3389/978-2-88919-722-4

Kayser, B., & Broers, B. (2013). Anti-doping policies: Choosing between imperfections. In Weisstub, D. (Ed.), Athletic Enhancement, Human Nature and Ethics (pp. 271–289). Dordrecht, Netherlands: Springer.

Koberda, J. L., Moses, A., Koberda, L., & Koberda, P. (2012). Cognitive enhancement using 19-electrode z-score neurofeedback. Journal of Neurotherapy, 16(3), 224–230. https://doi.org/10.1080/10874208.2012.705769

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833. https://doi.org/10.1073/pnas.0801268105

Juengst, E. T. (1998). Group identity and human diversity: Keeping biology straight from culture. The American Journal of Human Genetics, 63(3), 673–677. https://doi.org/10.1086/302032

Landers, D. M., Petruzzello, S. J., Salazar, W., Crews, D. J., Kubitz, K. A., Gannon, T. L., & Han, M. (1991). The influence of electrocortical biofeedback on performance in pre-elite archers. Medicine and Science in Sports and Exercise, 23(1), 123–129. https://doi.org/10.1249/00005768-199101000-00018

Lewthwaite, R., & Wulf, G. (2017). Optimizing motivation and attention for motor performance and learning. Current Opinion in Psychology, 16, 38–42. https://doi.org/10.1016/j.copsyc.2017.04.005

Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. https://doi.org/10.1037/a0020080

Lucke, J., & Partridge, B. (2013). Towards a smart population: A public health framework for cognitive enhancement. Neuroethics, 6(2), 419–427. https://doi.org/10.1007/s12152-012-9167-3

Mirifar, A., Beckmann, J., & Ehrlenspiel, F. (2017). Neurofeedback as supplementary training for optimizing athletes’ performance: A systematic review with implications for future research. Neuroscience and Biobehavioral Reviews, 75, 419–432. https://doi.org/10.1016/j.neubiorev.2017.02.005

Morente-Sánchez, J., & Zabala, M. (2013). Doping in sport: A review of elite athletes’ attitudes, beliefs, and knowledge. Sports Medicine, 43(6), 395–411. https://doi.org/10.1007/s40279-013-0037-x

Nagel, S. K. (2010). Too much of a good thing? Enhancement and the burden of self-determination. Neuroethics, 3(2), 109–119. https://doi.org/10.1007/s12152-010-9072-6

Nagel, S. K. (2014). Enhancement for well-being is still ethically challenging. Frontiers in Systems Neuroscience, 8, 72. https://doi.org/10.3389/fnsys.2014.00072

Nagel, S. K. (2015). When aid is a good thing: Trusting relationships as autonomy support in health care settings. The American Journal of Bioethics, 15(10), 49–51. https://doi.org/10.1080/15265161.2015.1074316

Nyberg, L., Sandblom, J., Jones, S., Neely, A. S., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences, 100(23), 13728–13733. https://doi.org/10.1073/pnas.1735487100

Okano, H., Nakamura, M., Yoshida, K., Okada, Y., Tsuji, O., Nori, S., … Miura, K. (2013). Steps toward safe cell therapy using induced pluripotent stem cells. Circulation Research, 112(3), 523–533. https://doi.org/10.1161/CIRCRESAHA.111.256149

Petróczi, A. (2013). The doping mindset—Part I: Implications of the functional use theory on mental representations of doping. Performance Enhancement and Health, 2(4), 153–163. https://doi.org/10.1016/j.peh.2014.06.001

Ray, K. S. (2016). Not just “study drugs” for the rich: Stimulants as moral tools for creating opportunities for socially disadvantaged students. The American Journal of Bioethics, 16(6), 29–38. https://doi.org/10.1080/15265161.2016.1170231

Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., … Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106(5), 1590–1595. https://doi.org/10.1073/pnas.0805413106

Repantis, D., Schlattmann, P., Laisney, O., & Heuser, I. (2010). Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research, 62(3), 187–206. https://doi.org/10.1016/j.phrs.2010.04.002

Sahakian, B. J., & Morein-Zamir, S. (2011). Neuroethical issues in cognitive enhancement. Journal of Psychopharmacology, 25(2), 197–204. https://doi.org/10.1177/0269881109106926

Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., Crews, D. J., & Kubitz, K. A. (1990). Hemispheric asymmetry, cardiac response, and performance in elite archers. Research Quarterly for Exercise and Sport, 61(4), 351–359. https://doi.org/10.1080/02701367.1990.10607499

Sandel, M. J. (2004, April). The case against perfection: What’s wrong with designer children, bionic athletes, and genetic engineering (Electronic version). The Atlantic Monthly. Retrieved from http://www.theatlantic.com/doc/prem/200404/sandel.

Schelle, K. J., Faulmüller, N., Caviola, L., & Hewstone, M. (2014). Attitudes toward pharmacological cognitive enhancement¬¬¬¬¬¬¬¬¬¬¬—a review. Frontiers in Systems Neuroscience, 8, 53. https://doi.org/10.3389/fnsys.2014.00053

Schooler, C. (1984). Psychological effects of complex environments during the life span: A review and theory. Intelligence, 8(4), 259–281. https://doi.org/10.1016/0160-2896(84)90011-4

Schooler, C., Mulatu, M. S., & Oates, G. (1999). The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychology and Aging, 14(3), 483–506. https://doi.org/10.1037/0882-7974.14.3.483

Shook, J. R., & Giordano, J. (2016). Defining contexts of neurocognitive (performance) enhancements: Neuroethical considerations and implications for policy. Cognitive Enhancement: Ethical and Policy Implications in International Perspectives, 76. https://doi.org/10.1093/acprof:oso/9780199396818.003.0006

Singh, I., & Kelleher, K. J. (2010). Neuroenhancement in young people: Proposal for research, policy, and clinical management. AJOB Neuroscience, 1(1), 3–16. https://doi.org/10.1080/21507740903508591

Svetlov, S. I., Kobeissy, F. H., & Gold, M. S. (2007). Performance enhancing, non-prescription use of Ritalin performance: A comparison with amphetamines and cocaine. Journal of Addictive Diseases, 26(4), 1–6. https://doi.org/10.1300/J069v26n04_01

Valenzuela-Fernández, A., Cabrero, J. R., Serrador, J. M., & Sánchez-Madrid, F. (2008). HDAC6: A key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends in Cell Biology, 18(6), 291–297. https://doi.org/10.1016/j.tcb.2008.04.003

Vargo, E. J., James, R. A., Agyeman, K., MacPhee, T., McIntyre, R., Ronca, F., & Petróczi, A. (2014). Perceptions of assisted cognitive and sport performance enhancement among university students in England. Performance Enhancement and Health, 3(2), 66–77. https://doi.org/10.1016/j.peh.2015.02.001

Verhaeghen, P., Marcoen, A., & Goossens, L. (1992). Improving memory performance in the aged through mnemonic training: A meta-analytic study. Psychology and Aging, 7(2), 242–251. https://doi.org/10.1037/0882-7974.7.2.242

Vernon, D. J. (2005). Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Applied Psychophysiology Biofeedback, 30(4), 347. https://doi.org/10.1007/s10484-005-8421-4

Vitor-Costa, M., Okuno, N. M., Bortolotti, H., Bertollo, M., Boggio, P. S., Fregni, F., & Altimari, L. R. (2015). Improving cycling performance: Transcranial direct current stimulation increases time to exhaustion in cycling. PLoS ONE, 10(12), e0144916. https://doi.org/10.1371/journal.pone.0144916

Williams, P. S., Hoffman, R. L., & Clark, B. C. (2013). Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS ONE, 8(12), e81418. https://doi.org/10.1371/journal.pone.0081418

Wolpe, P. R. (2002). Treatment, enhancement, and the ethics of neurotherapeutics. Brain and Cognition, 50(3), 387–395. https://doi.org/10.1016/S0278-2626(02)00534-1

Wood, T. (2006). Brain and body in sport and exercise. British Journal of Sports Medicine, 40, 880–881. https://doi.org/10.1136/bjsm.2006.026872

Zelinski, E. M., & Reyes, R. (2010). Cognitive benefits of computer games for older adults. Gerontechnology, 8(4), 220–235. https://doi.org/10.4017/gt.2009.08.04.004.00

Zhu, F. F., Yeung, A. Y., Poolton, J. M., Lee, T. M. C., Leung, G. K. K., & Masters, R. S. W. (2015). Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task. Brain Stimulation, 8(4), 784–786. https://doi.org/10.1016/j.brs.2015.02.005

Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431. https://doi.org/10.1016/j.neuroimage.2010.08.078

Downloads

Published

2019-09-13

Issue

Section

Review Articles