EEG source localization and attention differences between children exposed to drugs in utero and those with attention deficit/hyperactivity disorder: A pilot study
DOI:
https://doi.org/10.15540/nr.6.1.23Keywords:
Intrauterine drug exposure, EEG, LORETA, sLORETA, attention deficits, neuroimagingAbstract
Introduction: Intrauterine drug exposure (IUDE) including neonatal abstinence syndrome (NAS) is a group of problems that occur in a newborn exposed to drugs in the womb. Currently, there is no consensus on diagnostic criteria for addressing the cluster of problems present in children suffering from IUDE. The current data sought to examine differences between IUDE and attention-deficit/hyperactivity disorder (ADHD) clients to elucidate specific differences between these groups in the Conners Continuous Performance Test (CPT-3/K-CPT) and EEG source localization data using standardized low-resolution electromagnetic brain tomography (sLORETA). Methods: This study utilizes archived data from two groups 14 IUDE and 9 clients with standing diagnosis of ADHD between the ages of 4 and 13 without the presence of fetal alcohol syndrome (FAS). All clients completed a standard protocol to assess functional domains, including diagnostic interview, review of records, and tests of attention, executive functions, and psychological status. IUDE clients at time of initial assessment were taking one or more medications. ADHD clients consisted of medicated and unmedicated individuals. Results: Significant differences were found between resting-state baseline sLORETA parameters in temporal, limbic, and precuneus regions. Conclusions: IUDE presents a growing problem in the United States due to current opioid problems, and it is imperative to accurately classify these children according to this specific set of problems. sLORETA assessment may be useful as one marker of IUDE. Directions for future treatment paradigms are discussed as well as potential applications of neurofeedback and learning.
References
Accornero, V. H., Amado, A. J., Morrow, C. E., Xue, L., Anthony, J. C., & Bandstra, E. S. (2007). Impact of prenatal cocaine exposure on attention and response inhibition as assessed by continuous performance tests. Journal of Developmental & Behavioral Pediatrics, 28(3), 195–205. http://dx.doi.org/10.1097/01.DBP.0000268560.72580.f9
Adinoff, B., Gu, H., Merrick, C., McHugh, M., Jeon-Slaughter, H., Lu, H., ... Stein, E. A. (2015). Basal hippocampal activity and its functional connectivity predicts cocaine relapse. Biological Psychiatry, 78(7), 496–504. http://dx.doi.org/10.1016/j.biopsych.2014.12.027
Akyuz, N., Kekatpure, M. V., Liu, J., Sheinkopf, S. J., Quinn, B. T., Lala, M. D., ... Kosofsky, B. E. (2014). Structural brain imaging in children and adolescents following prenatal cocaine exposure: Preliminary longitudinal findings. Developmental Neuroscience, 36(3-4), 316–328. http://dx.doi.org/10.1159/000362685
Babiloni, C., Miniussi, C., Babiloni, F., Carducci, F., Cincotti, F., Del Percio, C., ... Rossini, P. M. (2004). Sub-second "temporal attention" modulates alpha rhythms. A high-resolution EEG study. Cognitive Brain Research, 19(3), 259–268. http://dx.doi.org/10.1016/j.cogbrainres.2003.12.010
Bellucci, G., Feng, C., Camilleri, J., Eickhoff, S. B., & Krueger, F. (2018). The role of the anterior insula in social norm compliance and enforcement: Evidence from coordinate-based and functional connectivity meta-analyses. Neuroscience & Biobehavioral Reviews, 92, 378–389. http://dx.doi.org/10.1016/j.neubiorev.2018.06.024
Bink, M., van Boxtel, G. J. M., Popma, A., Bongers, I. L., Denissen, A. J. M., & van Nieuwenhuizen, C. (2015). EEG theta and beta power spectra in adolescents with ADHD versus adolescents with ASD + ADHD. European Child & Adolescent Psychiatry, 24(8), 873–886. http://dx.doi.org/10.1007/s00787-014-0632-x
Bonnici, H. M., Cheke, L. G., Green, D. A. E., FitzGerald, T. H. M. B., & Simons, J. S. (2018). Specifying a causal role for angular gyrus in autobiographical memory. The Journal of Neuroscience, 38(49), 10438–10443. http://dx.doi.org/10.1523/JNEUROSCI.1239-18.2018
Boylan, C., Trueswell, J. C., & Thompson-Schill, S. L. (2017). Relational vs. attributive interpretation of nominal compounds differentially engages angular gyrus and anterior temporal lobe. Brain and Language, 169, 8–21. http://dx.doi.org/10.1016/j.bandl.2017.01.008
Bravo, F., Cross, I., Hawkins, S., Gonzalez, N., Docampo, J., Bruno, C., & Stamatakis, E. A. (2017). Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus. Neuropsychologia, 102, 144–162. http://dx.doi.org/10.1016/j.neuropsychologia.2017.05.029
Butz, A. M., Pulsifer, M. B., Leppert, M., Rimrodt, S., & Belcher, H. (2003). Comparison of intelligence, school readiness skills, and attention in in-utero drug-exposed and nonexposed preschool children. Clinical Pediatrics, 42(8), 727–739. http://dx.doi.org/10.1177/000992280304200809
Cannon, R. L. (2014). Parietal foci for attention-deficit/hyperactivity disorder: Targets for LORETA neurofeedback with outcomes. Biofeedback, 42(2), 47–57. http://dx.doi.org/10.5298/1081-5937-42.2.01
Cannon, R. L., & Baldwin, D. R. (2012). EEG current source density and the phenomenology of the default network. Clinical EEG and Neuroscience, 43(4), 257–267. http://dx.doi.org/10.1177/1550059412449780
Cannon, R. L., Congedo, M., Lubar, J. F., & Hutchens, T. (2009). Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices. International Journal of Neuroscience, 119(3), 404-441. http://dx.doi.org/10.1080/00207450802480325
Cannon, R. L., Lubar, J. F., Congedo, M., Thornton, K., Towler, K., & Hutchens, T. (2007). The effects of neurofeedback training in the cognitive division of the anterior cingulate gyrus. International Journal of Neuroscience, 117(3), 337–357. http://dx.doi.org/10.1080/00207450500514003
Cannon, R. L., Lubar, J. F., Sokhadze, E., & Baldwin, D. R. (2008). LORETA neurofeedback for addiction and the possible neurophysiology of psychological processes influenced: A case study and region of interest analysis of LORETA neurofeedback in right anterior cingulate cortex. Journal of Neurotherapy, 12(4), 227–241. http://dx.doi.org/10.1080/10874200802501948
Cannon, R. L., Strunk, W., Carroll, S. R., Carroll, S. (2018). LORETA neurofeedback at precuneus in 3-year-old female with intrauterine drug exposure. NeuroRegulation, 5(2), 75–82. http://dx.doi.org/10.15540/nr.5.2.75
Castellanos, F. X. (2015). Is adult-onset ADHD a distinct entity? The American Journal of Psychiatry, 172(10), 929–931. http://dx.doi.org/10.1176/appi.ajp.2015.15070988
Castellanos, F. X., & Elmaghrabi, S. E. (2017). On the road to physiological models of brain function in ADHD. The American Journal of Psychiatry, 174(9), 825–826. http://dx.doi.org/10.1176/appi.ajp.2017.17060667
Castellanos, F. X., & Hyde, Z. (2010). Diffusion tensor imaging provides new clues in adults with ADHD (commentary on Konrad et al.). European Journal of Neuroscience, 31(5), 910–911. http://dx.doi.org/10.1111/j.1460-9568.2010.07173.x
Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16(1), 17–26. http://dx.doi.org/10.1016/j.tics.2011.11.007
Chater-Diehl, E. J., Laufer, B. I., Castellani, C. A., Alberry, B. L., & Singh, S. M. (2016). Alteration of gene expression, DNA methylation, and histone methylation in free radical scavenging networks in adult mouse hippocampus following fetal alcohol exposure. PLoS One, 11(5), e0154836. http://dx.doi.org/10.1371/journal.pone.0154836
Chiriboga, C. A., Starr, D., Kuhn, L., & Wasserman, G. A. (2009). Prenatal cocaine exposure and prolonged focus attention. Poor infant information processing ability or precocious maturation of attentional systems? Developmental Neuroscience, 31(1–2), 149–158. http://dx.doi.org/10.1159/000207502
Church, M. W., Overbeck, G. W., & Andrzejczak, A. L. (1990). Prenatal cocaine exposure in the Long-Evans rat: I. Dose-dependent effects on gestation, mortality, and postnatal maturation. Neurotoxicology and Teratology, 12(4), 327–334. http://dx.doi.org/10.1016/0892-0362(90)90051-D
Congedo, M., Özen, C., & Sherlin, L. (2002). Notes on EEG resampling by natural cubic spline interpolation. Journal of Neurotherapy, 6(4), 73–80. http://dx.doi.org/10.1300/J184v06n04_08
Conradt, E., Lagasse, L. L., Shankaran, S., Bada, H., Bauer, C. R., Whitaker, T. M., ... Lester, B. M. (2014). Physiological correlates of neurobehavioral disinhibition that relate to drug use and risky sexual behavior in adolescents with prenatal substance exposure. Developmental Neuroscience, 36(3–4), 306–315. http://dx.doi.org/10.1159/000365004
Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., & Castellanos, F. X. (2012). Toward systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. The American Journal of Psychiatry, 169(10), 1038–1055. http://dx.doi.org/10.1176/appi.ajp.2012.11101521
Di Cesare, G., Marchi, M., Errante, A., Fasano, F., & Rizzolatti, G. (2018). Mirroring the social aspects of speech and actions: The role of the insula. Cerebral Cortex, 28(4), 1348–1357. http://dx.doi.org/10.1093/cercor/bhx051
Di Cesare, G., Pinardi, C., Carapelli, C., Caruana, F., Marchi, M., Gerbella, M., & Rizzolatti, G. (2018). Insula connections with the parieto-frontal circuit for generating arm actions in humans and macaque monkeys. Cerebral Cortex, bhy095. http://dx.doi.org/10.1093/cercor/bhy095
Dockree, P. M., Kelly, S. P., Foxe, J. J., Reilly, R. B., & Robertson, I. H. (2007). Optimal sustained attention is linked to the spectral content of background EEG activity: Greater ongoing tonic alpha (approximately 10 Hz) power supports successful phasic goal activation. European Journal of Neuroscience, 25(3), 900–907. http://dx.doi.org/10.1111/j.1460-9568.2007.05324.x
Duval, E. R., Joshi, S. A., Russman Block, S., Abelson, J. L., & Liberzon, I. (2018). Insula activation is modulated by attention shifting in social anxiety disorder. Journal of Anxiety Disorders, 56, 56–62. http://dx.doi.org/10.1016/j.janxdis.2018.04.004
Eiden, R. D., McAuliffe, S., Kachadourian, L., Coles, C., Colder, C., & Schuetze, P. (2009). Effects of prenatal cocaine exposure on infant reactivity and regulation. Neurotoxicology and Teratology, 31(1), 60–68. http://dx.doi.org/10.1016/j.ntt.2008.08.005
Estelles, J., Rodríguez-Arias, M., Maldonado, C., Aguilar, M. A., & Miñarro, J. (2005). Prenatal cocaine exposure alters spontaneous and cocaine-induced motor and social behaviors. Neurotoxicology and Teratology, 27(3), 449–457. http://dx.doi.org/10.1016/j.ntt.2005.01.002
Fell, J., Ludowig, E., Staresina, B. P., Wagner, T., Kranz, T., Elger, C. E., & Axmacher, N. (2011). Medial temporal theta/alpha power enhancement precedes successful memory encoding: Evidence based on intracranial EEG. The Journal of Neuroscience, 31(14), 5392–5397. http://dx.doi.org/10.1523/JNEUROSCI.3668-10.2011
Fernandes, Y., Rampersad, M., & Gerlai, R. (2015). Impairment of social behaviour persists two years after embryonic alcohol exposure in zebrafish: A model of fetal alcohol spectrum disorders. Behavioural Brain Research, 292, 102–108. http://dx.doi.org/10.1016/j.bbr.2015.05.060
Fisher, P. A., Lester, B. M., DeGarmo, D. S., LaGasse, L. L., Lin, H., Shankaran, S., ... Higgins, R. (2011). The combined effects of prenatal drug exposure and early adversity on neurobehavioral disinhibition in childhood and adolescence. Development and Psychopathology, 23(3), 777–788. http://dx.doi.org/10.1017/S0954579411000290
Franck, E. J. (1996). Prenatally drug-exposed children in out-of-home care: Are we looking at the whole picture? Child Welfare, 75(1), 19–34.
Freeman, J. (2000). Testing drug-exposed children. Iowa Med, 90(6), 9.
Fujii, M., Maesawa, S., Motomura, K., Futamura, M., Hayashi, Y., Koba, I., & Wakabayashi, T. (2015). Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca's area in the dominant hemisphere of patients with glioma. Journal of Neurosurgery, 122(6), 1390–1396. http://dx.doi.org/10.3171/2014.10.JNS14945
Gabriel, M., & Taylor, C. (1998). Prenatal exposure to cocaine impairs neuronal coding of attention and discriminative learning. Annals of the New York Academy of Sciences, 846(1), 194–212. http://dx.doi.org/10.1111/j.1749-6632.1998.tb09737.x
Garavan, H., Morgan, R. E., Mactutus, C. F., Levitsky, D. A., Booze, R. M., & Strupp, B. J. (2000). Prenatal cocaine exposure impairs selective attention: Evidence from serial reversal and extradimensional shift tasks. Behavioral Neuroscience, 114(4), 725–738. http://dx.doi.org/10.1037/0735-7044.114.4.725
Gendle, M. H., Strawderman, M. S., Mactutus, C. F., Booze, R. M., Levitsky, D. A., & Strupp, B. J. (2003). Impaired sustained attention and altered reactivity to errors in an animal model of prenatal cocaine exposure. Developmental Brain Research, 147(1–2), 85–96.
Geng, F., Salmeron, B. J., Ross, T. J., Black, M. M., & Riggins, T. (2018). Long-term effects of prenatal drug exposure on the neural correlates of memory at encoding and retrieval. Neurotoxicology and Teratology, 65, 70–77. http://dx.doi.org/10.1016/j.ntt.2017.10.008
Gloss, D., Varma, J. K., Pringsheim, T., & Nuwer, M. R. (2016). Practice advisory: The utility of EEG theta/beta power ratio in ADHD diagnosis. Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology, 87(22), 2375–2379. http://dx.doi.org/10.1212/WNL.0000000000003265
Grecucci, A., Giorgetta, C., Bonini, N., & Sanfey, A. G. (2013). Reappraising social emotions: The role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation. Frontiers in Human Neuroscience, 7, 523. http://dx.doi.org/10.3389/fnhum.2013.00523
Greenwald, M. K., Chiodo, L. M., Hannigan, J. H., Sokol, R. J., Janisse, J., & Delaney-Black, V. (2011). Teens with heavy prenatal cocaine exposure respond to experimental social provocation with escape not aggression. Neurotoxicology and Teratology, 33(2), 198–204. http://dx.doi.org/10.1016/j.ntt.2010.06.008
Grewen, K., Salzwedel, A. P., & Gao, W. (2015). Functional connectivity disruption in neonates with prenatal marijuana exposure. Frontiers in Human Neuroscience, 9, 601. http://dx.doi.org/10.3389/fnhum.2015.00601
Hammer, R. P., Jr., & Scheibel, A. B. (1981). Morphologic evidence for a delay of neuronal maturation in fetal alcohol exposure. Experimental Neurology, 74(2), 587–596. http://dx.doi.org/10.1016/0014-4886(81)90193-X
Heesink, L., Gladwin, T. E., Terburg, D., van Honk, J., Kleber, R., & Geuze, E. (2017). Proximity alert! Distance related cuneus activation in military veterans with anger and aggression problems. Psychiatry Research: Neuroimaging, 266, 114–122. http://dx.doi.org/10.1016/j.pscychresns.2017.06.012
Hu, S., Ide, J. S., Zhang, S., & Li, C.-S. R. (2016). The right superior frontal gyrus and individual variation in proactive control of impulsive response. The Journal of Neuroscience, 36(50), 12688–12696. http://dx.doi.org/10.1523/JNEUROSCI.1175-16.2016
Jaeger, D. A., Suchan, B., Schölmerich, A., Schneider, D. T., & Gawehn, N. (2015). Attention functioning in children with prenatal drug exposure. Infant Mental Health Journal, 36(5), 522–530. http://dx.doi.org/10.1002/imhj.21530
Jaime, M., McMahon, C. M., Davidson, B. C., Newell, L. C., Mundy, P. C., & Henderson, H. A. (2016). Brief report: Reduced temporal-central EEG alpha coherence during joint attention perception in adolescents with autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(4), 1477–1489. http://dx.doi.org/10.1007/s10803-015-2667-3
Kabir, Z. D., Kennedy, B., Katzman, A., Lahvis, G. P., & Kosofsky, B. E. (2014). Effects of prenatal cocaine exposure on social development in mice. Developmental Neuroscience, 36(3–4), 338–346. http://dx.doi.org/10.1159/000360524
Kelley, S. J. (1992). Parenting stress and child maltreatment in drug-exposed children. Child Abuse & Neglect, 16(3), 317–328. http://dx.doi.org/10.1016/0145-2134(92)90042-P
Kleiber, M. L., Diehl, E. J., Laufer, B. I., Mantha, K., Chokroborty-Hoque, A., Alberry, B., & Singh, S. M. (2014). Long-term genomic and epigenomic dysregulation as a consequence of prenatal alcohol exposure: a model for fetal alcohol spectrum disorders. Frontiers in Genetics, 5, 161. http://dx.doi.org/10.3389/fgene.2014.00161
Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). Induced alpha band power changes in the human EEG and attention. Neuroscience Letters, 244(2), 73–76.
Klumpp, H., Post, D., Angstadt, M., Fitzgerald, D. A., & Phan, K. L. (2013). Anterior cingulate cortex and insula response during indirect and direct processing of emotional faces in generalized social anxiety disorder. Biology of Mood & Anxiety Disorders, 3, 7. http://dx.doi.org/10.1186/2045-5380-3-7
Kne, T., Shaw, M. W., Garfield, E. F., & Hicks, J. (1994). A program to address the special needs of drug-exposed children. The Journal of School Health, 64(6), 251–253. http://dx.doi.org/10.1111/j.1746-1561.1994.tb06197.x
Koehler, S., Lauer, P., Schreppel, T., Jacob, C., Heine, M., Boreatti-Hümmer, A., ... Herrmann, M. J. (2009). Increased EEG power density in alpha and theta bands in adult ADHD patients. Journal of Neural Transmission, 116(1), 97–104. http://dx.doi.org/10.1007/s00702-008-0157-x
Kornrumpf, B., Dimigen, O., & Sommer, W. (2017). Lateralization of posterior alpha EEG reflects the distribution of spatial attention during saccadic reading. Psychophysiology, 54(6), 809–823. http://dx.doi.org/10.1111/psyp.12849
Kully-Martens, K., Denys, K., Treit, S., Tamana, S., & Rasmussen, C. (2012). A review of social skills deficits in individuals with fetal alcohol spectrum disorders and prenatal alcohol exposure: Profiles, mechanisms, and interventions. Alcoholism: Clinical and Experimental Research, 36(4), 568–576. http://dx.doi.org/10.1111/j.1530-0277.2011.01661.x
LaGasse, L. L., Gaskins, R. B., Bada, H. S., Shankaran, S., Liu, J., Lester, B. M., ... Roberts, M. (2011). Prenatal cocaine exposure and childhood obesity at nine years. Neurotoxicology and Teratology, 33(2), 188–197. http://dx.doi.org/10.1016/j.ntt.2010.11.002
Lai, C.-H., & Wu, Y.-T. (2013). Decreased regional homogeneity in lingual gyrus, increased regional homogeneity in cuneus and correlations with panic symptom severity of first-episode, medication-naïve and late-onset panic disorder patients. Psychiatry Research: Neuroimaging, 211(2), 127–131. http://dx.doi.org/10.1016/j.pscychresns.2012.11.006
Lenartowicz, A., Lu, S., Rodriguez, C., Lau, E. P., Walshaw, P. D., McCracken, J. T., ... Loo, S. K. (2016). Alpha desynchronization and fronto-parietal connectivity during spatial working memory encoding deficits in ADHD: A simultaneous EEG–fMRI study. NeuroImage: Clinical, 11, 210–223. http://dx.doi.org/10.1016/j.nicl.2016.01.023
Lester, B. M. (2000). Prenatal cocaine exposure and child outcome: A model for the study of the infant at risk. Israel Journal of Psychiatry and Related Sciences, 37(3), 223–235.
Lester, B. M., Lin, H., DeGarmo, D. S., Fisher, P. A., LaGasse, L. L., Levine, T. P., ... Higgins, R. D. (2012). Neurobehavioral disinhibition predicts initiation of substance use in children with prenatal cocaine exposure. Drug and Alcohol Dependence, 126(1–2), 80–86. http://dx.doi.org/10.1016/j.drugalcdep.2012.04.014
Li, K., Zhu, D., Guo, L., Li, Z., Lynch, M. E., Coles, C., ... Liu, T. (2013). Connectomics signatures of prenatal cocaine exposure affected adolescent brains. Human Brain Mapping, 34(10), 2494–2510. http://dx.doi.org/10.1002/hbm.22082
Li, W., Qin, W., Liu, H., Fan, L., Wang, J., Jiang, T., & Yu, C. (2013). Subregions of the human superior frontal gyrus and their connections. NeuroImage, 78, 46–58. http://dx.doi.org/10.1016/j.neuroimage.2013.04.011
Li, Z., Coles, C. D., Lynch, M. E., Hamann, S., Peltier, S., LaConte, S., & Hu, X. (2009). Prenatal cocaine exposure alters emotional arousal regulation and its effects on working memory. Neurotoxicology and Teratology, 31(6), 342–348. http://dx.doi.org/10.1016/j.ntt.2009.08.005
Li, Z., Santhanam, P., Coles, C. D., Lynch, M. E., Hamann, S., Peltier, S., & Hu, X. (2013). Prenatal cocaine exposure alters functional activation in the ventral prefrontal cortex and its structural connectivity with the amygdala. Psychiatry Research: Neuroimaging, 213(1), 47–55. http://dx.doi.org/10.1016/j.pscychresns.2012.12.005
Li, Z., Santhanam, P., Coles, C. D., Lynch, M. E., Hamann, S., Peltier, S., & Hu, X. (2011). Increased "default mode" activity in adolescents prenatally exposed to cocaine. Human Brain Mapping, 32(5), 759–770. http://dx.doi.org/10.1002/hbm.21059
Lotfipour, S., Leonard, G., Perron, M., Pike, B., Richer, L., Séguin, J. R., ... Paus, T. (2010). Prenatal exposure to maternal cigarette smoking interacts with a polymorphism in the alpha6 nicotinic acetylcholine receptor gene to influence drug use and striatum volume in adolescence. Molecular Psychiatry, 15(1), 6–8. http://dx.doi.org/10.1038/mp.2009.63
Matchin, W., Liao, C.-H., Gaston, P., & Lau, E. (2019). Same words, different structures: An fMRI investigation of argument relations and the angular gyrus. Neuropsychologia, 125, 116–128. http://dx.doi.org/10.1016/j.neuropsychologia.2019.01.019
Mayes, L. C., Cicchetti, D., Acharyya, S., & Zhang, H. (2003). Developmental trajectories of cocaine-and-other-drug-exposed and non-cocaine-exposed children. Journal of Developmental and Behavioral Pediatrics, 24(5), 323–335.
Mazaheri, A., Coffey-Corina, S., Mangun, G. R., Bekker, E. M., Berry, A. S., & Corbett, B. A. (2010). Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder. Biological Psychiatry, 67(7), 617–623. http://dx.doi.org/10.1016/j.biopsych.2009.11.022
McDannald, M. A., Jones, J. L., Takahashi, Y. K., & Schoenbaum, G. (2014). Learning theory: A driving force in understanding orbitofrontal function. Neurobiology of Learning Memory, 108, 22–27. http://dx.doi.org/10.1016/j.nlm.2013.06.003
McHugh, M. J., Demers, C. H., Braud, J., Briggs, R., Adinoff, B., & Stein, E. A. (2013). Striatal-insula circuits in cocaine addiction: Implications for impulsivity and relapse risk. The American Journal of Drug and Alcohol Abuse, 39(6), 424–432. http://dx.doi.org/10.3109/00952990.2013.847446
McHugh, M. J., Demers, C. H., Salmeron, B. J., Devous, M. D., Sr., Stein, E. A., & Adinoff, B. (2014). Cortico-amygdala coupling as a marker of early relapse risk in cocaine-addicted individuals. Frontiers in Psychiatry, 5, 16. http://dx.doi.org/10.3389/fpsyt.2014.00016
McHugh, M. J., Gu, H., Yang, Y., Adinoff, B., & Stein, E. A. (2017). Executive control network connectivity strength protects against relapse to cocaine use. Addiction Biology, 22(6), 1790–1801. http://dx.doi.org/10.1111/adb.12448
McNichol, T. (1999). The impact of drug-exposed children on family foster care. Child Welfare, 78(1), 184–196.
Mölle, M., Marshall, L., Fehm, H. L., & Born, J. (2002). EEG theta synchronization conjoined with alpha desynchronization indicate intentional encoding. European Journal of Neuroscience, 15(5), 923–928. https://doi.org/10.1046/j.1460-9568.2002.01921.x
Morrow, C. E., Culbertson, J. L., Accornero, V. H., Xue, L., Anthony, J. C., & Bandstra, E. S. (2006). Learning disabilities and intellectual functioning in school-aged children with prenatal cocaine exposure. Developmental Neuropsychology, 30(3), 905–931. http://dx.doi.org/10.1207/s15326942dn3003_8
Nash, K., Sheard, E., Rovet, J., & Koren, G. (2008). Understanding fetal alcohol spectrum disorders (FASDs): Toward identification of a behavioral phenotype. The Scientific World Journal, 8, 873–882. http://dx.doi.org/10.1100/tsw.2008.75
Noland, J. S., Singer, L. T., Short, E. J., Minnes, S., Arendt, R. E., Kirchner, H. L., & Bearer, C. (2005). Prenatal drug exposure and selective attention in preschoolers. Neurotoxicology and Teratology, 27(3), 429–438. http://dx.doi.org/10.1016/j.ntt.2005.02.001
Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG (2nd ed.). New York, NY: Oxford University Press.
Nygaard, E., Slinning, K., Moe, V., Due-Tønnessen, P., Fjell, A., & Walhovd, K. B. (2018). Neuroanatomical characteristics of youths with prenatal opioid and poly-drug exposure. Neurotoxicology and Teratology, 68, 13–26. http://dx.doi.org/10.1016/j.ntt.2018.04.004
Nygaard, E., Slinning, K., Moe, V., & Walhovd, K. B. (2016). Behavior and attention problems in eight-year-old children with prenatal opiate and poly-substance exposure: A longitudinal study. PLoS One, 11(6), e0158054. http://dx.doi.org/10.1371/journal.pone.0158054
Ookawa, S., Enatsu, R., Kanno, A., Ochi, S., Akiyama, Y., Kobayashi, T., ... Mikuni, N. (2017). Frontal fibers connecting the superior frontal gyrus to Broca area: A corticocortical evoked potential study. World Neurosurgery, 107, 239–248. http://dx.doi.org/10.1016/j.wneu.2017.07.166
Parise, M., Kubo, T. T. A., Doring, T. M., Tukamoto, G., Vincent, M., & Gasparetto, E. L. (2014). Cuneus and fusiform cortices thickness is reduced in trigeminal neuralgia. The Journal of Headache and Pain, 15, 17. http://dx.doi.org/10.1186/1129-2377-15-17
Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002). Functional imaging with low-resolution brain electromagnetic tomography (LORETA): A review. Methods and Findings in Experimental and Clinical Pharmacology, 24, Suppl. C, 91–95.
Pascual-Marqui, R. D., Lehmann, D., Koenig, T., Kochi, K., Merlo, M. C., Hell, D., & Koukkou, M. (1999). Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Research: Neuroimaging, 90(3), 169–179.
Petrovic, P., & Castellanos, F. X. (2016). Top-down dysregulation—From ADHD to emotional instability. Frontiers in Behavioral Neuroscience, 10, 70. http://dx.doi.org/10.3389/fnbeh.2016.00070
Pizzagalli, D. A., Oakes, T. R., & Davidson, R. J. (2003). Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjects. Psychophysiology, 40(6), 939–949. http://dx.doi.org/10.1111/1469-8986.00112
Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23. http://dx.doi.org/10.1146/annurev.psych.58.110405.085516
Rando, K., Chaplin, T. M., Potenza, M. N., Mayes, L., & Sinha, R. (2013). Prenatal cocaine exposure and gray matter volume in adolescent boys and girls: Relationship to substance use initiation. Biological Psychiatry, 74(7), 482–489. http://dx.doi.org/10.1016/j.biopsych.2013.04.030
Riggins, T., Cacic, K., Buckingham-Howes, S., Scaletti, L. A., Salmeron, B. J., & Black, M. M. (2012). Memory ability and hippocampal volume in adolescents with prenatal drug exposure. Neurotoxicology and Teratology, 34(4), 434–441. http://dx.doi.org/10.1016/j.ntt.2012.05.054
Riley, E., Kopotiyenko, K., & Zhdanova, I. (2015). Prenatal and acute cocaine exposure affects neural responses and habituation to visual stimuli. Frontiers in Neural Circuits, 9, 41. http://dx.doi.org/10.3389/fncir.2015.00041
Roitbak, T., Thomas, K., Martin, A., Allan, A., & Cunningham, L. A. (2011). Moderate fetal alcohol exposure impairs neurogenic capacity of murine neural stem cells isolated from the adult subventricular zone. Experimental Neurology, 229(2), 522–525. http://dx.doi.org/10.1016/j.expneurol.2011.03.007
Ross, E. J., Graham, D. L., Money, K. M., & Stanwood, G. D. (2015). Developmental consequences of fetal exposure to drugs: What we know and what we still must learn. Neuropsychopharmacology, 40(1), 61–87. http://dx.doi.org/10.1038/npp.2014.147
Roussotte, F., Soderberg, L., Warner, T., Narr, K., Lebel, C., Behnke, M., ... Sowell, E. (2012). Adolescents with prenatal cocaine exposure show subtle alterations in striatal surface morphology and frontal cortical volumes. Journal of Neurodeveloopmental Disorders, 4(1), 22. http://dx.doi.org/10.1186/1866-1955-4-22
Sadacca, B. F., Wied, H. M., Lopatina, N., Saini, G. K., Nemirovsky, D., & Schoenbaum, G. (2018). Orbitofrontal neurons signal sensory associations underlying model-based inference in a sensory preconditioning task. eLife, 7, e30373. http://dx.doi.org/10.7554/eLife.30373
Salzwedel, A. P., Grewen, K. M., Goldman, B. D., & Gao, W. (2016). Thalamocortical functional connectivity and behavioral disruptions in neonates with prenatal cocaine exposure. Neurotoxicology and Teratology, 56, 16–25. http://dx.doi.org/10.1016/j.ntt.2016.05.009
Salzwedel, A. P., Grewen, K. M., Vachet, C., Gerig, G., Lin, W., & Gao, W. (2015). Prenatal drug exposure affects neonatal brain functional connectivity. The Journal of Neuroscience, 35(14), 5860–5869. http://dx.doi.org/10.1523/JNEUROSCI.4333-14.2015
Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., ... Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22(11), 2917–2926. http://dx.doi.org/10.1111/j.1460-9568.2005.04482.x
Schiff, H. C., Bouhuis, A. L., Yu, K., Penzo, M. A., Li, H., He, M., & Li, B. (2018). An insula–central amygdala circuit for guiding tastant-reinforced choice behavior. The Journal of Neuroscience, 38(6), 1418–1429. http://dx.doi.org/10.1523/JNEUROSCI.1773-17.2017
Schweitzer, J. B., Riggins, T., Liang, X., Gallen, C., Kurup, P. K., Ross, T. J., ... Salmeron, B. J. (2015). Prenatal drug exposure to illicit drugs alters working memory-related brain activity and underlying network properties in adolescence. Neurotoxicology and Teratology, 48, 69–77. http://dx.doi.org/10.1016/j.ntt.2015.02.002
Slinning, K. (2004). Foster placed children prenatally exposed to poly-substances. Attention-related problems at ages 2 and 4 1/2. European Child & Adolescent Psychiatry, 13(1), 19–27. http://dx.doi.org/10.1007/s00787-004-0350-x
Sobrian, S. K., & Holson, R. R. (2011). Social behavior of offspring following prenatal cocaine exposure in rodents: A comparison with prenatal alcohol. Frontiers in Psychiatry, 2, 66. http://dx.doi.org/10.3389/fpsyt.2011.00066
Sokhadze, T. M., Cannon, R. L., & Trudeau, D. L. (2008). EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy, and recommendations for further research. Applied Psychophysiology and Biofeedback, 33(1), 1–28. http://dx.doi.org/10.1007/s10484-007-9047-5
Tamnes, C. K., Østby, Y., Fjell, A. M., Westlye, L. T., Due-Tønnessen, P., & Walhovd, K. B. (2010). Brain maturation in adolescence and young adulthood: Regional age-related changes in cortical thickness and white matter volume and microstructure. Cerebral Cortex, 20(3), 534–548. http://dx.doi.org/10.1093/cercor/bhp118
Thakral, P. P., Madore, K. P., & Schacter, D. L. (2017). A role for the left angular gyrus in episodic simulation and memory. The Journal of Neuroscience, 37(34), 8142–8149. http://dx.doi.org/10.1523/JNEUROSCI.1319-17.2017
Tsujii, T., Sakatani, K., Masuda, S., Akiyama, T., & Watanabe, S. (2011). Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study. NeuroImage, 58(2), 640–646. http://dx.doi.org/10.1016/j.neuroimage.2011.06.076
Tye, C., Rijsdijk, F., & McLoughlin, G. (2014). Genetic overlap between ADHD symptoms and EEG theta power. Brain and Cognition, 87, 168–172. http://dx.doi.org/10.1016/j.bandc.2014.03.010
van der Linden, M., Berkers, R. M. W. J., Morris, R. G. M., & Fernández, G. (2017). Angular gyrus involvement at encoding and retrieval is associated with durable but less specific memories. The Journal of Neuroscience, 37(39), 9474–9485. http://dx.doi.org/10.1523/JNEUROSCI.3603-16.2017
van Kemenade, B. M., Arikan, B. E., Kircher, T., & Straube, B. (2017). The angular gyrus is a supramodal comparator area in action-outcome monitoring. Brain Structure and Function, 222(8), 3691–3703. http://dx.doi.org/10.1007/s00429-017-1428-9
Vogel, T., Smieskova, R., Schmidt, A., Walter, A., Harrisberger, F., Eckert, A., ... Borgwardt, S. (2016). Increased superior frontal gyrus activation during working memory processing in psychosis: Significant relation to cumulative antipsychotic medication and to negative symptoms. Schizophrenia Research, 175(1–3), 20–26. http://dx.doi.org/10.1016/j.schres.2016.03.033
Walhovd, K. B., Tamnes, C. K., & Fjell, A. M. (2014). Brain structural maturation and the foundations of cognitive behavioral development. Current Opinion in Neurology, 27(2), 176–184. http://dx.doi.org/10.1097/WCO.0000000000000074
Wang, C., Wu, H., Chen, F., Xu, J., Li, H., Li, H., & Wang, J. (2018). Disrupted functional connectivity patterns of the insula subregions in drug-free major depressive disorder. Journal of Affective Disorders, 234, 297–304. http://dx.doi.org/10.1016/j.jad.2017.12.033
Wang, R., Kamezawa, R., Watanabe, A., & Iramina, K. (2017, July). EEG alpha power change during working memory encoding in adults with different memory performance levels. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC, pp. 982–985). Seogwipo, South Korea: IEEE. http://dx.doi.org/10.1109/EMBC.2017.8036990
Wang, X., Dow-Edwards, D., Anderson, V., Minkoff, H., & Hurd, Y. L. (2006). Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use. The Pharmacogenomics Journal, 6(4), 255–264. http://dx.doi.org/10.1038/sj.tpj.6500375
Weng, S.-J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., & Monk, C. S. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res, 1313, 202–214. http://dx.doi.org/10.1016/j.brainres.2009.11.057
Whitford, T. J., Wood, S. J., Yung, A., Cocchi, L., Berger, G., Shenton, M. E., ... Amminger, G. P. (2012). Structural abnormalities in the cuneus associated with Herpes Simplex Virus (type 1) infection in people at ultra high risk of developing psychosis. Schizophrenia Research, 135(1–3), 175–180. http://dx.doi.org/10.1016/j.schres.2011.11.003
Wikenheiser, A. M., Marrero-Garcia, Y., & Schoenbaum, G. (2017). Suppression of ventral hippocampal output impairs integrated orbitofrontal encoding of task structure. Neuron, 95(5), 1197–1207.e3. http://dx.doi.org/10.1016/j.neuron.2017.08.003
Willford, J. A., Singhabahu, D., Herat, A., & Richardson, G. A. (2018). An examination of the association between prenatal cocaine exposure and brain activation measures of arousal and attention in young adults: An fMRI study using the Attention Network Task. Neurotoxicology and Teratology, 69, 1–10. http://dx.doi.org/10.1016/j.ntt.2018.06.004
Wu, L., Yan, J., Qu, S. C., Feng, Y. Q., & Jiang, X. L. (2012). Abnormal regulation for progesterone production in placenta with prenatal cocaine exposure in rats. Placenta, 33(12), 977–981. http://dx.doi.org/10.1016/j.placenta.2012.10.001
Yip, S. W., Potenza, E. B., Balodis, I. M., Lacadie, C. M., Sinha, R., Mayes, L. C., & Potenza, M. N. (2014). Prenatal cocaine exposure and adolescent neural responses to appetitive and stressful stimuli. Neuropsychopharmacology, 39(12), 2824–2834. http://dx.doi.org/10.1038/npp.2014.133
Yu, T., Li, Y., Fan, F., Cao, H., Luo, X., Tan, S., ... Tan, Y. (2018). Decreased gray matter volume of cuneus and lingual gyrus in schizophrenia patients with tardive dyskinesia is associated with abnormal involuntary movement. Scientific Reports, 8(1), 12884. http://dx.doi.org/10.1038/s41598-018-31186-y
Zhang, Y., Zhou, W., Wang, S., Zhou, Q., Wang, H., Zhang, B., ... Wang, X. (2019). The roles of subdivisions of human insula in emotion perception and auditory processing. Cerebral Cortex, 29(2), 517–528. http://dx.doi.org/10.1093/cercor/bhx334
Zhao, Q., Hou, J., Chen, B., Shao, X., Zhu, R., Bu, Q., ... Cen, X. (2015). Prenatal cocaine exposure impairs cognitive function of progeny via insulin growth factor II epigenetic regulation. Neurobiology of Disease, 82, 54–65. http://dx.doi.org/10.1016/j.nbd.2015.05.014
Zumsteg, D., Wennberg, R. A., Treyer, V., Buck, A., & Wieser, H. G. (2005). H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology, 65(10), 1657–1660. http://dx.doi.org/10.1212/01.wnl.0000184516.32369.1a
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).