Proceedings of the 2017 ISNR Conference: Keynotes, Invited, and Student Award Presentations
DOI:
https://doi.org/10.15540/nr.4.3-4.138Abstract
Selected Abstracts of Conference Presentations at the 2017 International Society for Neurofeedback and Research (ISNR) 25th Annual Conference, Mashantucket, CT, USAReferences
-----Functional Neuroimaging as a Window into Human Brain Function: Applications to Better Understand and Optimize Neuromodulatory Therapies
Harris, R. E., Napadow, V., Huggins, J. P., Pauer, L., Kim, J., Hampson, J., … Clauw, D. J. (2013). Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology, 119(6), 1453–1464. http://dx.doi.org/10.1097/ALN.0000000000000017
Kim, J., Loggia, M. L., Cahalan, C. M., Harris, R. E., Beissner, F., Garcia, R. G., … Napadow, V. (2015). The somatosensory link in fibromyalgia: Functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis & Rheumatology, 67(5), 1395–1405. http://dx.doi.org/10.1002/art.39043
Kim, J., Loggia, M. L., Edwards, R. R., Wasan, A. D., Gollub, R. L., & Napadow, V. (2013). Sustained deep-tissue pain alters functional brain connectivity. Pain, 154(8), 1343–1351. http://dx.doi.org/10.1016/j.pain.2013.04.016
Loggia, M. L., Kim, J., Gollub, R. L., Vangel, M. G., Kirsch, I., Kong, J., … Napadow, V. (2013). Default mode network connectivity encodes clinical pain: An arterial spin labeling study. Pain, 154(1), 24–33. http://dx.doi.org/10.1016/j.pain.2012.07.029
Napadow, V., & Harris, R. E. (2014). What has functional connectivity and chemical neuroimaging in fibromyalgia taught us about the mechanisms and management of “centralized” pain? Arthritis Research & Therapy, 16(4), 425. http://dx.doi.org/10.1186/s13075-014-0425-0
Napadow, V., Kim, J., Clauw, D. J., & Harris, R. E. (2012). Brief report: Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis & Rheumatology, 64(7), 2398–2403. http://dx.doi.org/10.1002/art.34412
Napadow, V., LaCount, L., Park, K., As-Sanie, S., Clauw, D. J., & Harris, R. E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis & Rheumatology, 62(8), 2545–2555. http://dx.doi.org/10.1002/art.27497
-----Impact of Childhood Maltreatment on Brain Development and the Critical Importance of Distinguishing Between Maltreated and Non-Maltreated Diagnostic Subtypes
Teicher, M. H., & Samson, J. A. (2013). Childhood maltreatment and psychopathology: A case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. The American Journal of Psychiatry, 170(10), 1114–1133. http://dx.doi.org/10.1176/appi.ajp.2013.12070957
Teicher, M. H., & Samson, J. A. (2016). Annual Research Review: Enduring neurobiological effects of childhood abuse and neglect. The Journal of Child Psychology and Psychiatry, 57(3), 241–266. http://dx.doi.org/10.1111/jcpp.12507
Teicher, M. H., Samson, J. A., Anderson, C. M., & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function and connectivity. Nature Reviews Neuroscience, 17, 652–666. http://dx.doi.org/10.1038/nrn.2016.111
-----The Evolution of Quantitative EEG: A Perfect Storm
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The Brain's Default Network: Anatomy, Function, and Relevance to Disease. Annals of the New York Academy of Sciences, 1124, 1¬–38. http://dx.doi.org/10.1196 /annals.1440.011
Dohrmann, A.-L., Stengler, K., Jahn, I., & Olbrich, S. (2017). EEG-arousal regulation as predictor of treatment response in patients suffering from obsessive compulsive disorder. Clin Neuropsychol, 128(10), 1906–1914. http://dx.doi.org/10.1016 /j.clinph.2017.07.406
Hanley, D., Prichep, L. S., Bazarian, J., Huff, J. S., Naunheim, R., Garrett, J., … Hack, D. C. (2017). Emergency Department Triage of Traumatic Head Injury Using Brain Electrical Activity Biomarkers: A Multisite Prospective Observational Validation Trial. Academic Emergency Medicine, 24(5), 617–627. http://dx.doi.org/10.1111/acem.13175
Jelic, V., Johansson, S.-E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., … Wahlund, L.-O. (2000). Quantitative electroencephalography in mild cognitive impairment: Longitudinal changes and possible prediction of Alzheimer's disease. Neurobiology of Aging, 21(4), 533–540. http://dx.doi.org/10.1016/S0197-4580(00)00153-6
John, E. R., Ahn, H., Prichep, L. S., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210(4475), 1255–1258. http://dx.doi.org/10.1126/science.7434026
Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehman, D. (2002). Functional imaging with low resolution brain electromagnetic tomography (LORETA): A review. Methods & Findings in Experimental & Clinical Pharmacology, 24C, 91–95. http://www.brainm.com/software/pubs/brain/loreta /LORETA-ReviewPaper03.pdf
Prichep, L. S., John, E. R., Ferris, S. H., Rausch, L., Fang, Z., Cancro, R., … Reisberg, B. (2006). Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiology of Aging, 27(3), 471–481. http://dx.doi.org/10.1016 /j.neurobiolaging.2005.07.021
Prichep, L. S., Shah, J., Merkin, H., et al. (in press, 2017). Identification of Chronic Pain Matrix Using Quantitative EEG Source Localization. Clinical EEG and Neuroscience.
-----Early Detection and Treatment of Attention Deficits in Preterm Infants
Gomes, H., Molholm, S., Christodoulou, C., Ritter, W., & Cowan, N. (2000). The development of auditory attention in children. Frontiers in Bioscience, 5, 108–120. https://www.bioscience.org/2000/v5/d/gomes/fulltext.htm
Gutiérrez-Hernández, C. C., Harmony, T., Avecilla-Ramírez, G. N., Barrón-Quiroz, I., Guillén-Gasca, V., Trejo-Bautista, G., & Bautista-Olvera, M. M. (2017). Infant Scale of Selective Attention: A Proposal to Assess Cognitive Abilities. Evaluar, 17(1), 94–106. Retrieved from https://revistas.unc.edu.ar /index.php/revaluar/article/download/17077/16708
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. http://dx.doi.org/10.1016/j.clinph.2007.04.019
Reynolds, G. D., & Romano, A. C. (2016). The development of attention systems and working memory in infancy. Frontiers in Systems Neuroscience, 10, 15. http://dx.doi.org/10.3389 /fnsys.2016.00015
-----Functional Neuromarkers for Psychiatry and Neurology: Defining Brain Dysfunctions and Constructing Protocols of Neuromodulation
Kropotov, J. D. (2016). Functional neuromarkers for psychiatry: Applications for diagnosis and treatment. Amsterdam, Netherlands: Academic Press, Elsevier.
-----Is A/T Neurofeedback Training (NFT) a Successful Treatment Method for Women with Moderate to Severe Trait Anxiety: A Clinical Trial and Methodological Considerations
Aliño, M., Gadea, M., & Espert, R. (2016). A critical view of neurofeedback experimental designs: Sham and control as necessary conditions. International Journal of Neurology and Neurotherapy, 3(1), 041. http://dx.doi.org/10.23937/2378-3001/3/1/1041
Alkoby, O., Abu-Rmileh, A., Shriki, O., & Todder, D. (2017). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience. http://dx.doi.org /10.1016/j.neuroscience.2016.12.050
Bates, D., Maechler, M., & Bolker, B. (2013). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. 2012. Retrieved from http://CRAN.R-project.org/package=lme4
Baxter, A. J., Scott, K. M., Vos, T., & Whiteford, H. A. (2013). Global prevalence of anxiety disorders: A systematic review and meta-regression. Psychological Medicine, 43(5), 897–910. http://dx.doi.org/10.1017/S003329171200147X
Éismont, E. V., Lutsyuk, N. V., & Pavlenko, V. B. (2011). Moderation of increased anxiety in children and teenagers with the use of neurotherapy: estimation of efficacy. Neurophysiology, 43(1), 53–61. http://dx.doi.org/10.1007/s11062-011-9185-5
Ferreira, A., Celeste, W. C., Cheein, F. A., Bastos-Filho, T. F., Sarcinelli-Filho, M., & Carelli, R. (2008). Human-machine interfaces based on EMG and EEG applied to robotic systems. Journal of NeuroEngineering and Rehabilitation, 5, 10. http://dx.doi.org/10.1186/1743-0003-5-10
Gidron, Y. (2013). State Anxiety. In M. D. Gellman & J. R. Turner (Eds.), Encyclopedia of Behavioral Medicine (p. 1877). New York, NY: Springer. http://dx.doi.org10.1007/978-1-4419-1005-9
Kohn, P. M., Kantor, L., DeCicco, T. L., & Beck, A. T. (2008). The Beck Anxiety Inventory-Trait (BAI): A measure of dispositional anxiety not contaminated by dispositional depression. Journal of Personality Assessment, 90(5), 499–506. http://dx.doi.org /10.1080/00223890802248844
Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143–158. http://dx.doi.org/10.15412 /J.BCN.03070208
Mennella, R., Patron, E., & Palomba, D. (2017). Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety. Behaviour Research and Therapy, 92, 32–40. http://dx.doi.org/10.1016/j.brat.2017.02.002
Mirman, D. (2014). Growth curve analysis and visualization using R (p. 168). Boca Raton, FL: CRC Press.
Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, 59(4), 475–494. http://dx.doi.org/10.1016 /j.jml.2007.11.006
Monastra, V. J., Lynn, S., Linden, M., Lubar, J. F., Gruzelier, J., & LaVaque, T. J. (2005). Electroencephalographic biofeedback in the treatment of Attention-Deficit/Hyperactivity Disorder. Applied Psychophysiology and Biofeedback, 30(2), 95–114. http://dx.doi.org/10.1300/J184v09n04_02
Moore, N. C. (2000). A review of EEG biofeedback treatment of anxiety disorders. Clinical Electroencephalography, 31(1), 1–6. http://dx.doi.org/10.1177/155005940003100105
Moore, T. J., & Mattison, D. R. (2017). Adult utilization of psychiatric drugs and differences by sex, age, and race. JAMA Internal Medicine, 177(2), 274–275. http://dx.doi.org/10.1001/jamainternmed.2016.7507
Paluch, K., Jurewicz, K., Rogala, J., Krauz, R., Szczypińska, M., Mikicin, M., ... & Kublik, E. (2017). Beware: Recruitment of Muscle Activity by the EEG-Neurofeedback Trainings of High Frequencies. Frontiers in Human Neuroscience, 11, 119. http://dx.doi.org/10.3389/fnhum.2017.00119
Phneah, S. W., & Nisar, H. (2017). EEG-based alpha neurofeedback training for mood enhancement. Australasian Physical & Engineering Sciences in Medicine, 40(2), 325–336. http://dx.doi.org/10.1007/s13246-017-0538-2
Plotkin, W. B., & Rice, K. M. (1981). Biofeedback as a placebo: Anxiety reduction facilitated by training in either suppression or enhancement of alpha brainwaves. Journal of Counseling and Clinical Psychology, 49(4), 590–596. http://dx.doi.org /10.1037/0022-006X.49.4.590
Raymond, J., Varney, C., Parkinson, L. A., & Gruzelier, J. H. (2005). The effects of alpha/theta neurofeedback on personality and mood. Cognitive Brain Research, 23(2), 287–292. http://dx.doi.org/10.1016/j.cogbrainres.2004.10.023
Rice, K. M., Blanchard, E. B., & Purcell, M. (1993). Biofeedback treatment of generalized anxiety disorder: Preliminary results. Biofeedback and Self-Regulation, 18(2), 93–105. http://dx.doi.org/10.1007/BF01848110
Rogala, J., Jurewicz, K., Paluch, K., Kublik, E., Cetnarski, R., & Wróbel, A. (2016). The Do's and Don'ts of Neurofeedback Training: A Review of the Controlled Studies Using Healthy Adults. Frontiers in Human Neuroscience, 10, 301. http://dx.doi.org/10.3389/fnhum.2016.00301
Ros, T., Baars, B. J., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Frontiers in Human Neuroscience, 8, 1008. http://dx.doi.org/10.3389 /fnhum.2014.01008
Sargunaraj, D., Kumaraiah, V., Mishra, H. & Kumar, K. A. (1987). A comparison of the efficacy of electromyograph and alpha biofeedback therapy in anxiety neurosis. NIMHANS Journal, 5, 103–107.
Sarkar, P., Rathee, S. P., & Neera, N. (1999). Comparative efficacy of pharmacotherapy and bio-feed back among cases of generalised anxiety disorder. Journal of Projective Psychology & Mental Health, 6(1), 69¬–77.
Simkin, D. R., Thatcher, R.W., & Lubar, J. F. (2014). Quantitative EEG and neurofeedback in children and adolescents: Anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury. Child & Adolescent Psychiatric Clinics of North America, 23(3), 427–464. http://dx.doi.org/10.1016/j.chc.2014.03.001
Snapinn, S. M., & Jiang, Q. (2007). Responder analyses and the assessment of a clinically relevant treatment effect. Trials, 8(1), 31. http://dx.doi.org/10.1186/1745-6215-8-31
Soutar, R. G., & Longo, R. E. (2011). Doing neurofeedback: An introduction. ISNR Research Foundation.
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
Strehl, U. (2013). Lerntheoretische Grundlagen und Überlegungen zum Neurofeedback. In U. Strehl (Ed.), Neurofeedback (pp. 13–30). Stuttgart, Germany: Kohlhammer.
Strehl, U. (2014). What learning theories can teach us in designing neurofeedback treatments. Frontiers in Human Neuroscience, 8, 894. http://dx.doi.org/10.3389 /fnhum.2014.00894
Studer, P., Kratz, O., Gevensleben, H., Rothenberger, A., Moll, G. H., Hautzinger, M., & Heinrich, H. (2014). Slow cortical potential and theta/beta neurofeedback training in adults: Effects on attentional processes and motor system excitability. Frontiers in Human Neuroscience, 8, 555. http://dx.doi.org/10.3389/fnhum.2014.00555
Thatcher, R. W., & Lubar, J. F. (2008). History of the scientific standards of QEEG normative databases. In T. Budzinsky, H. Budzinsky, J. Evans, & A. Abarbanel (Eds.), Introduction to QEEG and neurofeedback: Advanced theory and applications. San Diego, CA: Academic Press.
Uryniak, T., Chan, I. S. F., Fedorov, V. V., Jiang, Q., Oppenheimer, L., Snapinn, S. M., ... & Zhang, J. (2012). Responder analyses—A PhRMA position paper. Statistics in Biopharmaceutical Research, 3(3), 476–487. http://dx.doi.org /10.1198/sbr.2011.10070
Vanathy, S., Sharma, P. S. V. N., & Kumar, K. B. (1998). The efficacy of alpha and theta neurofeedback training in treatment of generalized anxiety disorder. Indian Journal of Clinical Psychology, 25(2), 136–143.
Wang, S., Zhao, Y., Chen, S., Lin, G., Sun, P., & Wang, T. (2013). EEG biofeedback improves attentional bias in high trait anxiety individuals. BMC Neuroscience, 14(1), 115.
Watson, C. G., & Herder, J. (1980). Effectiveness of alpha biofeedback therapy: Negative results. Journal of Clinical Psychology, 36(2), 508–513. http://dx.doi.org/10.1002 /jclp.6120360221
White, E. K., Groeneveld, K. M., Tittle, R. K., Bolhuis, N. A., Martin, R. E., Royer, T. G., & Fotuhi, M. (2017). Combined neurofeedback and heart rate variability training for individuals with symptoms of anxiety and depression: A retrospective study. NeuroRegulation, 4(1), 37–55. http://dx.doi.org/10.15540/nr.4.1.37
Wyckoff, S., & Birbaumer, N. (2014). Neurofeedback. In D. J. A. Dozois (Ed.), The Wiley Handbook of Cognitive Behavioral Therapy, Part One (13, pp. 273–310). Princeton, NJ: Wiley & Sons Press. http://dx.doi.org/10.1002 /9781118528563.wbcbt13
Zuberer, A., Brandeis, D., & Drechsler, R. (2015). Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity. Frontiers in Human Neuroscience, 9, 135. http://dx.doi.org/10.3389/fnhum.2015.00135
-----The Effect of Slow Breathing Training on Electroencephalogram
Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3), 177–191. http://dx.doi.org/10.1023 /A:1009554825745
Prinsloo, G. E., Rauch, H. G. L., Karpul, D., & Derman, W. E. (2013). The effect of a single session of short duration heart rate variability biofeedback on EEG: A pilot study. Applied Psychophysiology and Biofeedback, 38(1), 45–56. http://dx.doi.org/10.1007/s10484-012-9207-0
-----The Effects of Personalized EEG-Neurofeedback in College Students with ADHD
Arns, M., de Ridder, S., Strehl, U., Breteler, M., & Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity: A meta-analysis. Clinical EEG and Neuroscience, 40(3), 180–189. http://dx.doi.org/10.1177/155005940904000311
Arns, M., Drinkenburg, W., & Leon Kenemans, J. (2012). The effects of qEEG-informed neurofeedback in ADHD: An open-label pilot study. Applied Psychophysiology and Biofeedback, 37(3), 171–180. http://dx.doi.org/10.1007/s10484-012-9191-4
Johnstone, J., Gunkelman, J., & Lunt, J. (2005). Clinical database development: Characterization of EEG phenotypes. Clinical EEG and Neuroscience, 36(2), 99–107. http://dx.doi.org/10.1177/155005940503600209
-----The Differences Between Frontal Alpha Asymmetry Among Healthy Participants and Patients with Major Depressive Disorder
Baehr, E., Rosenfeld, J. P., & Baehr, R. (1997). The clinical use of an alpha asymmetry protocol in the neurofeedback treatment of depression: Two case studies. Journal of Neurotherapy, 2(3), 10–23. http://dx.doi.org/10.1300/J184v02n03_02
Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. Journal of Abnormal Psychology, 115(4), 715–729. http://dx.doi.org/10.1037/0021-843X.115.4.715
-----Neurostructural Predictors of Cognitive Behavioral Therapy (CBT) for Obsessive-Compulsive Disorder: Implications for the Integration of Neurofeedback Training and CBT
Butler, A. C., Chapman, J. E., Forman, E. M., & Beck, A. T. (2006). The empirical status of cognitive-behavioral therapy: A review of meta-analyses. Clinical Psychology Review, 26(1), 17¬–31. http://dx.doi.org/10.1016/j.cpr.2005.07.003
Hammond, D. C. (2003). QEEG-guided neurofeedback in the treatment of obsessive compulsive disorder. Journal of Neurotherapy, 7(2), 25–52. http://dx.doi.org/10.1300 /J184v07n02_03
Menzies, L., Chamberlain, S. R., Laird, A. R., Thelen, S. M., Sahakian, B. J., & Bullmore, E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited. • Neuroscience & Biobehavioral Reviews, 32(3), 525–549. http://dx.doi.org/10.1016 /j.neubiorev.2007.09.005
Mito, H., Matsuura, N., Mukai, K., Yanagisawa, Y., Nakajima, A., Motoyama, M., ... & Matsunaga, H. (2014). The impacts of elevated autism spectrum disorder traits on clinical and psychosocial features and long-term treatment outcome in adult patients with obsessive-compulsive disorder. Comprehensive Psychiatry, 55(7), 1526–1533. http://dx.doi.org/10.1016/j.comppsych.2014.05.005
Mohlman, J., & Gorman, J. M. (2005). The role of executive functioning in CBT: A pilot study with anxious older adults. Behaviour Research and Therapy, 43(4), 447–465. http://dx.doi.org/10.1016/j.brat.2004.03.007
Murray, K., Jassi, A., Mataix-Cols, D., Barrow, F., & Krebs, G. (2015). Outcomes of cognitive behaviour therapy for obsessive–compulsive disorder in young people with and without autism spectrum disorders: A case controlled study. Psychiatry Research, 228(1), 8–13. http://dx.doi.org/10.1016/j.psychres.2015.03.012
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).