Neurotherapies and Alzheimer: a protocol oriented review.
DOI:
https://doi.org/10.15540/nr.4.2.79Keywords:
Alzheimer, AVE, 40hz, neurofeedback, binaural beats, Alpha, Gamma, MCI, Stimulation, MicrogliaAbstract
With regard to the recent findings in Alzheimer animal models, some Neurotherapies are reviewed, specially Brainwave study, Neurofeedback and Audiovisual Estimulation techniques. With a a goal on Aging, Cognitive Impairment and Alzheimer disease improvement, and the possible diagnostic, preventive and therapeutic use in Humans. Some protocols which might offer significative improvements in Attention, Executive functions and Mood state are identified, specially for the first steps of the disease. The recent advances in Microglia stimulation are also reviewed. In General, the analyzed data of the classical protocols used, match with the result of the last 15 years of investigation of EEG diagnostic of Alzheimer.
References
Cristina Prieto Jurczynska, Miriam Eimil Ortiz, Carlos López de Silanes de Miguel, Marcos Llanero Luque. Impacto social de la enfermedad de Alzheimer y otras Demencias 2011 Fundacion Española de Enfermedades Neurologicas. Report available at: http://www.fundaciondelcerebro.es/docs/imp_social_alzheimer.pdf
Rodrigues, C., Castro, F. V., & Española, C. R. (2016). Los cambios de personalidad en la enfermedad de Alzheimer. International Journal of Developmental and Educational Psychology. Revista INFAD de Psicología., 5(1), 177-186. DOI: http://doi.org/10.17060/ijodaep.2014.n1.v5.660 License: CC BY 4.0
Lichtenberg, P. A., Murman, D. L., & Mellow, A. M. (2003). Handbook of dementia: psychological, neurological, and psychiatric perspectives. Hoboken, NJ, etc.: Wiley.
Gil, R., Arroyo‐Anllo, E. M., Ingrand, P., Gil, M., Neau, J. P., Ornon, C., & Bonnaud, V. (2001). Self‐consciousness and Alzheimer's disease. Acta Neurologica Scandinavica, 104(5), 296-300. http://doi.org/10.1034/j.1600-0404.2001.00280.x
Lladó, A., Antón-Aguirre, S., Villar, A., Rami, L., & Molinuevo, J. L. (2008). Impacto psicológico del diagnóstico de la enfermedad de Alzheimer. Neurología, 23(5), 294-298. Abstract in English: http://cat.inist.fr/?aModele=afficheN&cpsidt=20532670
Portero, A. I. P. (1998). Burnout en cuidadores principales de pacientes con Alzheimer: el síndrome del asistente desasistido. Anales de psicología, 14(1), 83. http://search.proquest.com/openview/e620580521a6d9b1b0331c6467e2e422/1?pq-origsite=gscholar&cbl=1606360
Gupta, Stankus, Fukuda, Okumura Caregiver Burden of Alzheimer.s disease in Japan 2015 Feb 2015 Report. Kandar Health. http://www.kantarhealth.com/docs/white-papers/caregiver-burden-of-alzheimer's-disease-in-japan.pdf?sfvrsn=6
Bromberg, Elke, B., MCio, C., Kelem, V., Bruno, G., Carlos, S., Daiane, L.,Irani, A. (2015). Emotional Burden Effects on Attention and Executive Function in Family Caregivers of Alzheimer Patients. Frontiers in Human Neuroscience, 9 http://doi.org/10.3389/conf.fnhum.2015.217.00054
Correa, M. & Bromberg, E. (2015). Psychophysiological correlates of cognitive deficits in family caregivers of patients with Alzheimer Disease. Neuroscience,286, 371-382. http://dx.doi.org/10.1016/j.neuroscience.2014.11.052
Clyburn, L. D., Stones, M. J., Hadjistavropoulos, T., & Tuokko, H. (2000). Predicting caregiver burden and depression in Alzheimer's disease. Journals of Gerontology Series B, 55(1), S2-S13. https://doi.org/10.1093/geronb/55.1.S2
Franco, C., Sola, M. D., & Justo, E. (2010). Reducción del malestar psicológico y de la sobrecarga en familiares cuidadores de enfermos de Alzheimer mediante la aplicación de un programa de entrenamiento en Mindfulness .Reducing discomfort and overload in alzheimer family caregivers through a mindfulness program. Revista Española de Geriatría y Gerontología,45(5), 252-258. http://doi.org/10.1016/j.regg.2010.03.006
Zambrano Cruz, Renato, & Ceballos Cardona, Patricia. (2007). Síndrome de carga del cuidador. Revista Colombiana de Psiquiatría, 36(Suppl. 1), 26-39. Print version ISSN 0034-7450 Retrieved, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74502007000500005&lng=en&tlng=es.
Schneider LS, Dagerman KS, Higgins JPT, McShane R. Lack of Evidence for the Efficacy of Memantine in Mild Alzheimer Disease. Arch Neurol. 2011;68(8):991-998. http://doi.org/10.1001/archneurol.2011.69
Kitagawa, N., & Sakurai, M. (2016). Memantine‐induced sustained unconsciousness. Neurology and Clinical Neuroscience, 4(6), 236-238. http://doi.org/10.1111/ncn3.12076
Matsunaga, S., Kishi, T., & Iwata, N. (2015). Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. Plos one, 10(4), e0123289. https://doi.org/10.1371/journal.pone.0123289
John Hardy, Bart De Strooper; Alzheimer’s disease: where next for anti-amyloid therapies?. Brain 2017; 140 (4): 853-855. http://doi.org/10.1093/brain/awx059
Gates, Nicola J. and Sachdev, Perminder. ‘Is Cognitive Training an Effective Treatment for Preclinical and Early Alzheimer’s Disease?’ 1 Jan. 2014 : S551 – S559. http://doi.org/10.3233/JAD-141302
Bahar-Fuchs, A., Hampstead, B. M., & Clare, L. (2014). Cognitive Training For Older Adults With Mci And Mild Dementia: State Of The Science, Central Challenges, And Possible Solutions. Alzheimer's & Dementia,10(4). http://dx.doi.org/10.1016/j.jalz.2014.04.138
Clare, L., & Woods, R. T. (2004). Cognitive training and cognitive rehabilitation for people with early-stage Alzheimer's disease: A review. Neuropsychological Rehabilitation,14(4), 385-401. http://doi.org/10.1080/09602010443000074
Olazarán, J., Reisberg, B., Clare, L., Cruz, I., Peña-Casanova, J., del Ser, T., & Muñiz, R. (2010). Eficacia de las terapias no farmacológicas en la enfermedad de Alzheimer: una revisión sistemática. Dement Geriatr Cogn Disord, 30(2), 161-178. http://doi.org/10.1159/000316119
Frank, W., & Konta, B. (2005). Cognitive training for dementia. GMS health technology assessment, 1. http://europepmc.org/articles/PMC3011315
Orrell, M., Yates, L., Leung, P., Kang, S., Hoare, Z., Whitaker, C., … Orgeta, V. (2017). The impact of individual Cognitive Stimulation Therapy (iCST) on cognition, quality of life, caregiver health, and family relationships in dementia: A randomised controlled trial. PLoS Medicine, 14(3), e1002269. http://doi.org/10.1371/journal.pmed.1002269
Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. science, 297(5580), 353-356. http://doi.org/10.1126/science.1072994
Hardy, J. (2009), The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. Journal of Neurochemistry, 110: 1129–1134. http://doi.org/10.1111/j.1471-4159.2009.06181.x
Snowdon, D. A., Greiner, L. H., Mortimer, J. A., Riley, K. P., Greiner, P. A., & Markesbery, W. R. (1997). Brain infarction and the clinical expression of Alzheimer disease: the Nun Study. Jama, 277(10), 813-817. http://doi.org/10.1001/jama.1997.03540340047031
Bero, A. W., Yan, P., Roh, J. H., Cirrito, J. R., Stewart, F. R., Raichle, M. E., … Holtzman, D. M. (2011). Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nature Neuroscience, 14(6), 750–756. http://doi.org/10.1038/nn.2801
Heneka, MT; Carson, MJ; Khoury, JE; Landreth, GE; Brosseron, F; Feinstein, DL; et al.(2015). Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 14(4), 388 - 405. http://doi.org/10.1016/S1474-4422(15)70016-5. UCLA: 895368. Also from: http://escholarship.org/uc/item/99h2f9m1
De Haan, W., Mott, K., van Straaten, E. C. W., Scheltens, P., & Stam, C. J. (2012). Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer’s Disease. PLoS Computational Biology, 8(8), e1002582. http://doi.org/10.1371/journal.pcbi.1002582
Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., … Trojanowski, J. Q. (2013). Update on hypothetical model of Alzheimer’s disease biomarkers. Lancet Neurology, 12(2), 207–216. http://doi.org/10.1016/S1474-4422(12)70291-0
Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D’Avanzo, C., … Kim, D. Y. (2014). A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature, 515(7526), 274–278. http://doi.org/10.1038/nature13800
Collura, T. F. (2014). Technical foundations of neurofeedback. Routledge. Charpt.7,8,9
Kropotov, J. D. (2010). Quantitative EEG, event-related potentials and neurotherapy. Academic Press. (Part IV)
Chapin, T. J., & Russell-Chapin, L. A. (2013). Neurotherapy and neurofeedback: Brain-based treatment for psychological and behavioral problems. Routledge.
André W. Keizer, Maurice Verschoor, Roland S. Verment, Bernhard Hommel, The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures, International Journal of Psychophysiology, Volume 75, Issue 1, January 2010, Pages 25-32, ISSN 0167-8760, http://doi.org/10.1016/j.ijpsycho.2009.10.011
Catherine Tallon-Baudry, Olivier Bertrand : Oscillatory gamma activity in humans and its role in object representation; Trends in Cognitive Sciences, 1999, Volume 3, Issue 4, Pages 151-162
http://dx.doi.org/10.1016/S1364-6613(99)01299-1
Moretti DV. Conversion of mild cognitive impairment patients in Alzheimer’s disease: prognostic value of Alpha3/Alpha2 electroencephalographic rhythms power ratio. Alzheimer’s Research & Therapy. 2015;7:80. http://doi.org/10.1186/s13195-015-0162-x.
Moretti, D. V., Prestia, A., Fracassi, C., Binetti, G., Zanetti, O., & Frisoni, G. B. (2012). Specific EEG changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer's disease. International Journal of Alzheimer’s Disease, 2012. http://dx.doi.org/10.1155/2012/253153
Moretti, D. V., Babiloni, C., Binetti, G., Cassetta, E., Dal Forno, G., Ferreric, F., ... & Rodriguez, G. (2004). Individual analysis of EEG frequency and band power in mild Alzheimer's disease. Clinical Neurophysiology, 115(2), 299-308. DOI: http://dx.doi.org/10.1016/S1388-2457(03)00345-6
Jeong, J. (2004). EEG dynamics in patients with Alzheimer's disease. Clinical neurophysiology, 115(7), 1490-1505. http://dx.doi.org/10.1016/j.clinph.2004.01.001
Moretti DV, Prestia A, Binetti G, Zanetti O, Frisoni GB. Increase of theta frequency is associated with reduction in regional cerebral blood flow only in subjects with mild cognitive impairment with higher upper alpha/low alpha EEG frequency power ratio. Frontiers in Behavioral Neuroscience. 2013;7:188. http://doi.org/10.3389/fnbeh.2013.00188.
Dauwels, J., Vialatte, F., & Cichocki, A. (2010). Diagnosis of Alzheimer's disease from EEG signals: where are we standing?. Current Alzheimer Research, 7(6), 487-505. https://doi.org/10.2174/156720510792231720
Babiloni, C., Frisoni, G., Steriade, M., Bresciani, L., Binetti, G., Del Percio, C., ... & Zappasodi, F. (2006). Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer's disease. Clinical Neurophysiology, 117(5), 1113-1129. https://doi.org/10.1016/j.clinph.2006.01.020
Poil, S. S., De Haan, W., van der Flier, W. M., Mansvelder, H. D., Scheltens, P., & Linkenkaer-Hansen, K. (2013). Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage. Frontiers in aging neuroscience, 5, 58. https://doi.org/10.3389/fnagi.2013.00058
Babiloni, C., Frisoni, G. B., Pievani, M., Vecchio, F., Lizio, R., Buttiglione, M., ... & Rossini, P. M. (2009). Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage, 44(1), 123-135. https://doi.org/10.1016/j.neuroimage.2008.08.005
Sadaghiani, S., & Kleinschmidt, A. (2016). Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends in Cognitive Sciences, 20(11), 805-817. https://doi.org/10.1016/j.tics.2016.09.004
Kuskowski, M. A., Mortimer, J. A., Morley, G. K., Malone, S. M., & Okaya, A. J. (1993). Rate of cognitive decline in Alzheimer's disease is associated with EEG alpha power. Biological psychiatry, 33(8), 659-662. https://doi.org/10.1016/0006-3223(93)90108-P
Rodriguez, G., Copello, F., Vitali, P., Perego, G., & Nobili, F. (1999). EEG spectral profile to stage Alzheimer's disease. Clinical Neurophysiology, 110(10), 1831-1837.https://doi.org/10.1016/S1388-2457(99)00123-6
Kashefpoor, M., Rabbani, H., & Barekatain, M. (2016). Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features. Journal of medical signals and sensors, 6(1), 25.Downloaded from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786960/
Garcés, P., Vicente, R., Wibral, M., Pineda Pardo, J. A., López, M. E., Aurtenetxe, S., ... & Maestú, F. (2013). Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment. Frontiers in aging neuroscience, 5, 100. https://doi.org/10.3389/fnagi.2013.00100
Fauzan, N., & Amran, N. H. (2015). Brain dynamics of mild cognitive impairment (MCI) from eeg features. Procedia-Social and Behavioral Sciences, 165, 284-290.https://doi.org/10.1016/j.sbspro.2014.12.633
Moretti, D. V. (2015). Conversion of mild cognitive impairment patients in Alzheimer’s disease: prognostic value of Alpha3/Alpha2 electroencephalographic rhythms power ratio. Alzheimer's research & therapy, 7(1), 80. http://doi.org/10.1186/s13195-015-0162-x
Tsolaki, A., Kazis, D., Kompatsiaris, I., Kosmidou, V., & Tsolaki, M. (2014). Electroencephalogram and Alzheimer’s Disease: Clinical and Research Approaches. International Journal of Alzheimer’s Disease, 2014, 349249. http://doi.org/10.1155/2014/349249
Hsiao, F., Wang, Y., Yan, S., Chen, W., & Lin, Y. (2013). Altered Oscillation and Synchronization of Default-Mode Network Activity in Mild Alzheimer’s Disease Compared to Mild Cognitive Impairment: An Electrophysiological Study. PLoS ONE,8(7). http://doi.org/10.1371/journal.pone.0068792
Bonanni, L., Thomas, A., Tiraboschi, P., Perfetti, B., Varanese, S., & Onofrj, M. (2008). EEG comparisons in early Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease with dementia patients with a 2-year follow-up. Brain, 131(3), 690-705. htps://doi.org/10.1093/brain/awm322
Van Deursen, J. A., Vuurman, E. F. P. M., Verhey, F. R. J., van Kranen-Mastenbroek, V. H. J. M., & Riedel, W. J. (2008). Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. Journal of neural transmission, 115(9), 1301-1311. http://doi.org/10.1007/s00702-008-0083-y
Guido Rodriguez, Dario Arnaldi, and Agnese Picco, “Brain Functional Network in Alzheimer's Disease: Diagnostic Markers for Diagnosis and Monitoring,” International Journal of Alzheimer’s Disease, vol. 2011, Article ID 481903, 10 pages, 2011. http://doi.org/10.4061/2011/481903
Pritchard, W. S., Duke, D. W., & Coburn, K. L. (1991). Altered EEG dynamical responsivity associated with normal aging and probable Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 2(2), 102-105. https://doi.org/10.1159/000107183
Azarpaikan, A., Torbati, H. T., & Sohrabi, M. (2014). Neurofeedback and physical balance in Parkinson's patients. Gait & posture, 40(1), 177-181. https://doi.org/10.1016/j.gaitpost.2014.03.179
Rana, M., Varan, A. Q., Davoudi, A., Cohen, R. A., Sitaram, R., & Ebner, N. C. (2016). Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain. Frontiers in Aging Neuroscience, 8, 239. http://doi.org/10.3389/fnagi.2016.00239
Becerra, J., Fernandez, T., Roca-Stappung, M., Diaz-Comas, L., Galán, L., Bosch, J., ... & Harmony, T. (2012). Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder. Journal of Alzheimer's Disease, 28(2), 357-367. http://doi.org/10.3233/JAD-2011-111055
Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., Lubar, J. F., & Kounios, J. (2007). EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. The Clinical neuropsychologist, 21(1), 110. http://doi.org/10.1080/13854040600744839
S.M. Staufenbiel, A.-M. Brouwer, A.W. Keizer, N.C. van Wouwe, Effect of beta and gamma neurofeedback on memory and intelligence in the elderly, Biological Psychology, Volume 95, January 2014, Pages 74-85, ISSN 0301-0511, http://doi.org/10.1016/j.biopsycho.2013.05.020
Bird, B. L., Newton, F. A., Sheer, D. E., & Ford, M. (1978). Biofeedback training of 40-Hz EEG in humans. Biofeedback and Self-Regulation, 3(1), 1-11. http://doi.org/10.1007/BF00998559
Budzynski, H. K., & Tang, H. Y. (2007). Brain brightening. In Handbook of neurofeedback: Dynamics and clinical applications (pp. 231-265). Chpt. 10 ISBN: 978-0-7890-3360-4 CRC Press http://doi.org/10.1201/b14658-15
Robert Grove (2011) Obituary: Thomas Budzynski, Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience, 15:2, 182-186, http://doi.org/10.1080/10874208.2011.570687
Chapin, T. J., & Russell-Chapin, L. A. (2013). Neurotherapy and neurofeedback: Brain-based treatment for psychological and behavioral problems. Routledge. ISBN pag 415
Escolano, C., Navarro-Gil, M., Garcia-Campayo, J., Congedo, M., & Minguez, J. (2014). The effects of individual upper alpha neurofeedback in ADHD: an open-label pilot study. Applied psychophysiology and biofeedback, 39(3-4), 193-202. http://doi.org/10.1007/s10484-014-9257-6
Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage, 54(2), 1427-1431. http://doi.org/10.1016/j.neuroimage.2010.08.078
Robin E. Luijmes, Sjaak Pouwels, Jacko Boonman The effectiveness of neurofeedback on cognitive functioning in patients with Alzheimer's disease: Preliminary results
Neurophysiologie Clinique/Clinical Neurophysiology, Volume 46, Issue 3, Ps 179-187 http://doi.org/10.1016/j.neucli.2016.05.069
Koberda, J. L. (2014). Z-score LORETA neurofeedback as a potential therapy in cognitive dysfunction and dementia. Journal of Psychology & Clinical Psychiatry, 1(6). doi: http://doi.org/10.15406/jpcpy.2014.01.00037
Fotuhi, M., Lubinski, B., Trullinger, M., Hausterman, N., Riloff, T., Hadadi, M., & Raji, C. A. (2016). A personalized 12‐week" Brain Fitness Program" for improving cognitive function and increasing the volume of hippocampus in elderly with mild cognitive impairement. The Journal of Prevention of Alzheimer's Disease. February 8, 2016, http://dx.doi.org/10.14283/jpad.2016.92
Surmeli, T., Eralp, E., Mustafazade, I., Kos, H., Özer, G. E., & Surmeli, O. H. (2016). Quantitative EEG Neurometric Analysis–Guided Neurofeedback Treatment in Dementia 20 Cases. How Neurometric Analysis Is Important for the Treatment of Dementia and as a Biomarker?. Clinical EEG and neuroscience, 47(2), 118-133. http://journals.sagepub.com/doi/abs/10.1177/1550059415590750
Collura, T. Festa, E. (2011) Validation of a Global Live Z-Score Protocol in a Randomized, Sham-Controlled Study of Cognitive Decline in Aging. Selected Abstracts of Conference Presentations at the 2011 International Society for Neurofeedback and Research (ISNR) 19th ISNR Conference, Phoenix, Arizona Pg, 401-451 Journal of Neurotherapy Vol. 15 , Iss. 4,2011
http://dx.doi.org/10.1080/10874208.2011.623098
Festa, E.K., Heindel, W.C., Connors, N.C., Hirschberg, L., & Ott, B.R. (2009). Neurofeedback training enhances the efficiency of cortical processing in normal aging. Cognitive Neuroscience Society Annual Meeting Program, A11, p. 41. supplement of the Journal of Cognitive Neuroscience.
Marvin H. Berman, Jon A. Frederick. Efficacy Of Neurofeedback For Executive And Memory Function In Dementia. http://dx.doi.org/10.1016/j.jalz.2009.07.046
Skjerve, A., Holsten, F., Aarsland, D., Bjorvatn, B., Nygaard, H. A., & JOHANSEN, I. (2004). Improvement in behavioral symptoms and advance of activity acrophase after short‐term bright light treatment in severe dementia. Psychiatry and clinical neurosciences, 58(4), 343-347. http://doi.org/10.1111/j.1440-1819.2004.01265.x
Hansen, N. (2014). Brain Stimulation for Combating Alzheimer’s Disease. Frontiers in Neurology, 5, 80. http://doi.org/10.3389/fneur.2014.00080
Clements-Cortes, A., Ahonen, H., Evans, M., Freedman, M., & Bartel, L. (2016). Short-term effects of rhythmic sensory stimulation in Alzheimer’s disease: An exploratory pilot study. Journal of Alzheimer's Disease, 52(2), 651-660. http://doi.org/10.3233/JAD-160081
Buzsáki, G., & Wang, X. J. (2012). Mechanisms of gamma oscillations. Annual review of neuroscience, 35, 203-225. http://annualreviews.org/doi/abs/10.1146/annurev-neuro-062111-150444
Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., ... & Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663-667. http://doi.org/10.1038/nature08002
Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247), 698–702. http://doi.org/10.1038/nature07991
Başar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., & Başar, E. (1996). Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. International Journal of Psychophysiology, 24(1), 101-112.https://doi.org/10.1016/S0167-8760(96)00051-7
Verret, L., Mann, E. O., Hang, G. B., Barth, A. M. I., Cobos, I., Ho, K., … Palop, J. J. (2012). Inhibitory Interneuron Deficit Links Altered Network Activity and Cognitive Dysfunction in Alzheimer Model. Cell, 149(3), 708–721. http://doi.org/10.1016/j.cell.2012.02.046
Collura, T. F., & Siever, D. (2009). Audio-visual entrainment in relation to mental health and EEG. Introduction to Quantitative EEG and Neurofeedback, 195-224. http://doi.org/10.1016/b978-0-12-374534-7.00008-3
Siever, D. (2007). Audio-Visual Entrainment. Handbook of Neurofeedback, 155-183. http://doi.org/10.1201/b14658-11
Teplan, M., Krakovská, A., & Štolc, S. (2006A). Short-term effects of audio-visual stimulation on EEG. Measurement Science Review, 6(4), 67-70. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.4114
Teplan, M., Krakovska, A., & Štolc, S. (2006B). EEG responses to long-term audio–visual stimulation. International journal of psychophysiology, 59(2), 81-90. https://doi.org/10.1016/j.ijpsycho.2005.02.005
McConnell, P. A., Froeliger, B., Garland, E. L., Ives, J. C., & Sforzo, G. A. (2014). Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal. Frontiers in psychology, 5, 1248. https://doi.org/10.3389/fpsyg.2014.01248
Pastor, M. A., Artieda, J., Arbizu, J., Marti-Climent, J. M., Peñuelas, I., & Masdeu, J. C. (2002). Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. Journal of Neuroscience, 22(23), 10501-10506. http://www.jneurosci.org/content/22/23/10501.short
Herrmann, C. S. (2001). Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental brain research, 137(3-4), 346-353. http://doi.org/10.1007/s002210100682
Tallon-Baudry, C., Bertrand, O., Wienbruch, C., Ross, B., & Pantev, C. (1997). Combined EEG and MEG recordings of visual 40 Hz responses to illusory triangles in human. Neuroreport, 8(5), 1103-1107. http://doi.org/10.1097/00001756-199703240-00008
Colzato, L. S., Barone, H., Sellaro, R., & Hommel, B. (2017). More attentional focusing through binaural beats: evidence from the global–local task. Psychological research, 81(1), 271-277. http://doi.org/10.1007/s00426-015-0727-0
Chaieb, Leila, et al. "The Impact of Monaural Beat Stimulation on Anxiety and Cognition." Frontiers in Human Neuroscience 11 (2017): 251. https://doi.org/10.3389/fnhum.2017.00251
iChaieb, L., Wilpert, E. C., Reber, T. P., & Fell, J. (2015). Auditory beat stimulation and its effects on cognition and mood states. Frontiers in psychiatry, 6. DOI: http://doi.org/10.3389/fpsyt.2015.00070
Grose, J. H., & Mamo, S. K. (2012). Electrophysiological measurement of binaural beats: effects of primary tone frequency and observer age. Ear and hearing, 32(2), 187. http://doi.org/10.1097/AUD.0b013e318230bbbd
Bernhard Ross, Takahiro Miyazaki, Jessica Thompson, Shahab Jamali, Takako Fujioka (2014) Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing, Journal of Neurophysiology Oct 2014, 112 (8) 1871-1884;
http://doi.org/10.1152/jn.00224.2014
Pastor, M. A., Artieda, J., Arbizu, J., Valencia, M., & Masdeu, J. C. (2003). Human cerebral activation during steady-state visual-evoked responses. Journal of neuroscience, 23(37), 11621-11627. http://www.jneurosci.org/content/23/37/11621.short
Williams J, Ramaswamy D, Oulhaj A (2006) 10 Hz flicker improves recognition memory in older people. BMC Neurosci 7: 21. pmid:16515710 http://doi.org/10.1186/1471-2202-7-21
Kikuchi, M. Wada Y., Takeda T., Oe H., Hashimoto T., Koshino Y. EEG harmonic responses to photic stimulation in normal aging and Alzheimer's disease: differences in interhemispheric coherence. Clin. Neurophysiol. 2002;113(7):1045–1051 DOI: http://dx.doi.org/10.1016/S1388-2457(02)00129-3
Politoff, Alberto L. et al. Decreased alpha bandwidth responsiveness to photic driving in Alzheimer disease Electroencephalography and Clinical Neurophysiology ,1992 Volume 82 , Issue 1 , 45 - 52 DOI: http://dx.doi.org/10.1016/0013-4694(92)90181-G
Cronin-Golomb, A., Corkin, S., Rizzo, J. F., Cohen, J., Growdon, J. H., & Banks, K. S. (1991). Visual dysfunction in Alzheimer's disease: relation to normal aging. Annals of neurology, 29(1), 41-52 http://doi.org/10.1002/ana.410290110
Mewborn, C. (2015) CFF Predicts Executive Function in Younger and Older Adults. Archives of Clinical Neuropsychology, 30(7), 605-610. https://doi.org/10.1093/arclin/acv054
Garcia, G. (2008, April). High frequency SSVEPs for BCI applications. In Computer-Human Interaction. http://hmi.ewi.utwente.nl/chi2008/chi2008_files/garcia.pdf
Ruth Olmstead PhD (2005) Use of Auditory and Visual Stimulation to Improve Cognitive Abilities in Learning-Disabled Children, Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience, 9:2, 49-61, http://doi.org/10.1300/J184v09n02_04
Gaspar, PhyllisGaspar, Phyllis et al.2014 Efficacy of Brain Brightening for Enhancing Performance and EEG Alpha Rhythm in Early and Middle Stage Dementia, Journal of the American Medical Directors Association , Volume 15 , Issue 3 , B26 - B27 http://dx.doi.org/10.1016/j.jamda.2013.12.071 Abstract http://www.jamda.com/article/S1525-8610(13)00787-1/pdf
Fariña González, J., & Escalona Zapata, J. (2005). La obra de Pío del Río Hortega y sus consecuencias en la neuropatología. Arbor, 181(714), 221-232. http://dx.doi.org/10.3989/arbor.2005.i714.431
Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med. 2015 Mar 11;7(278):278ra33; http://www.ncbi.nlm.nih.gov/pubmed/25761889.
Sommer, A. P. (2015). A mechanism for ultrasound/light-induced biostimulation. Annals of Translational Medicine, 3(19), 291. http://doi.org/10.3978/j.issn.2305-5839.2015.09.18
Hannah F. Iaccarino et al.& Li-Huei Tsai Nature 540, 230–235 (08 December 2016) http://doi.org/10.1038/nature20587
Aron, L., & Yankner, B. A. (2016). Neurodegenerative disorders: Neural synchronization in Alzheimer's disease. Nature, 540(7632), 207-208. http://doi.org/10.1038/540207a
Cheng, K. P., Kiernan, E. A., Eliceiri, K. W., Williams, J. C., & Watters, J. J. (2016). Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression. Scientific Reports, 6, 21172. http://doi.org/10.1038/srep21172
Natalie A. Duggett and Paul L. Chazot (2014) Low-Intensity Light Therapy (1068 nm) Protects CAD Neuroblastoma Cells from β- Amyloid-Mediated Cell Death . Biol Med 1:103. http://doi.org/10.4172/0974-8369.S1-003
Grillo, S. L., Duggett, N. A., Ennaceur, A., & Chazot, P. L. (2013). Non-invasive infra-red therapy (1072nm) reduces β-amyloid protein levels in the brain of an Alzheimer’s disease mouse model, TASTPM. Journal of Photochemistry and Photobiology B: Biology, 123, 13-22.
http://doi.org/10.1016/j.jphotobiol.2013.02.015
Rusinek, H., Endo, Y., De Santi, S., Frid, D., Tsui, W. H., Segal, S., ... & de Leon, M. J. (2004). Atrophy rate in medial temporal lobe during progression of Alzheimer disease. Neurology, 63(12), 2354-2359.: http://dx.doi.org/10.1212/01.WNL.0000148602.30175.AC
Chan, D., Fox, N. C., Scahill, R. I., Crum, W. R., Whitwell, J. L., Leschziner, G., ... & Rossor, M. N. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Annals of neurology, 49(4), 433-442. http://doi.org/10.1002/ana.92
Cherry, J. D., Olschowka, J. A., & O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation, 11, 98. http://doi.org/10.1186/1742-2094-11-98
Suárez-Calvet M, et al. Dominantly Inherited Alzheimer Network. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med. 2016 Dec 14;8(369):369ra178. http://doi.org/10.1126/scitranslmed.aag1767
Suarez-Calvet, M. Microglia y Alzheimer: activación de la microglia previa. Revista Genetica Medica, Marzo 2017 Online: http://revistageneticamedica.com/2017/03/01/microglia-y-alzheimer/
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).