Neuromodulation based on rTMS affects behavioral measures and autonomic nervous system activity in children with autism
DOI:
https://doi.org/10.15540/nr.4.2.65Keywords:
TMS, HRV, Skin conductance, autism, behaviorAbstract
Many children with autism spectrum disorder (ASD) exhibit symptoms associated with autonomic nervous system (ANS) dysfunction indicative of low psychophysiological flexibility. It is suggested that ASD symptoms are associated with generalized abnormalities in the central nervous system, including structures and networks involved in the top-down regulation of the ANS. Repetitive transcranial magnetic stimulation (rTMS) has been suggested as a possible therapy to target ANS regulation deficits in ASD. In the current study we used neuromodulation based on rTMS over the dorsolateral prefrontal cortex (DLPFC) to reduce sympathetic arousal and increase parasympathetic activity in children with ASD. In a study on 27 children with autism we administered weekly 0.5 Hz rTMS bilaterally over the DLPFC with concurrent recording of autonomic activity. Statistical analysis of time and frequency domain heart rate variability (HRV) indices and skin conductance level (SCL) revealed a strong linear regression of most HRV and SCL measures. Several parental behavioral rating scores improved post-TMS and showed a correlation with autonomic outcomes, in particular parasympathetic indices of HRV negatively correlated with repetitive and stereotyped behaviors, while sympathetic arousal indices showed positive correlation with the same behaviors. The paper discusses potential neurobiological mechanisms involved in post-TMS autonomic balance and aberrant behavior improvements.
References
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders, fifth edition. Washington, DC. http://dx.doi.org/10.1176/appi.books.9780890425596
Althaus, M., Mulder, L. J., Mulder, G., Aarnoudse, C., & Minderaa, R. (1999). Cardiac adaptivity to attention-demanding tasks in children with a pervasive developmental disorder not otherwise specified (PDD-NOS). Biological Psychiatry, 46(6), 799-809. http://dx.doi.org/10.1016/S0006-3223(98)00374-6
Aman, M. G., & Singh, N. N. (1994). Aberrant Behavior Checklist - Community. Supplementary Manual. East Aurora, NY: Slosson Educational Publications.
Barry, R. J., & James, A. L. (1988). Coding of stimulus parameters in autistic, retarded, and normal children: evidence for a two-factor theory of autism. International Journal of Psychophysiology, 6(2), 139-149. http://dx.doi.org/10.1016/0167-8760(88)90045-1
Baruth, J., Casanova, M., El-Baz, A., Horrell, T., Mathai, G., Sears, L., & Sokhadze, E. (2010). Low-frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorders. Journal of Neurotherapy, 14(3), 179-194. http://dx.doi.org/10.1080/10874208.2010.501500
Baruth, J., Williams, E., Sokhadze, E., El-Baz, A., Sears, L., & Casanova, M. F. (2011). Repetitive transcranial stimulation (rTMS) improves electroencephalographic and behavioral outcome measures in autism spectrum disorders (ASD). Autism Science Digest, 1(1), 52-57.
Bachevalier, J., & Loveland, K. A. (2006). The orbitofrontal-amygdala circuit and self-regulation of social-emotional behavior in autism. Neuroscience Biobehavioral Reviews, 30(1), 97-117. http://dx.doi.org/10.1016/j.neubiorev.2005.07.002
Benevides, T. W., & Lane, S. J. (2015). A review of cardiac autonomic measures: considerations for examination of physiological response in children with autism spectrum disorder. Journal Autism and Developmental Disorders, 45(2), 560-575. http://dx.doi.org/10.1007/s10803-013-1971-z
Ben-Shachar, D., Belmaker, R. H., Grisaru, N., & Klein, E. (1997). Transcranial magnetic stimulation induces alterations in brain monoamines. Journal of Neural Transmission, 104(2-3), 191-197. http://dx.doi.org/10.1007/BF01273180
Berntson, G., Bigger, J. T., Eckberg, D., Grossman, P., Kaufmann P. G., Malik, M., ... Van der Molen, M. W. (1997). Heart rate variability: origins, methods and interpretive caveates. Psychophysiology, 34(6), 623-648. http://dx.doi.org/10.1111/j.1469-8986.1997.tb02140.x
Bodfish, J. W., Symons, F. J., & Lewis, J. (1999). Repetitive Behavior Scale. Western Carolina Center Research Reports.
Boucsein, W. (2012). Electrodermal activity (2nd ed.) New York: Springer. http://dx.doi.org/10.1007/978-1-4614-1126-0
Casanova, M. F. (2005). Minicolumnar pathology in autism. In M. F. Casanova (ed.), Recent developments in autism research (pp.133-144). New York: Nova Biomedical Books.
Casanova, M. F. (2006). Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist, 12(5), 435-441. http://dx.doi.org/10.1177/1073858406290375
Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17(9), 692-695. http://dx.doi.org/10.1177/088307380201700908
Casanova, M. F., van Kooten, I. A., Switala, A. E., van England, H., Heinsen, H., Steinbusch, H. W., ... Schmitz, C. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112(3), 287-303. http://dx.doi.org/10.1007/s00401-006-0085-5
Casanova, M. F., Baruth, J., El-Baz, A., Tasman, A., Sears, L., & Sokhadze, E. (2012). Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Translational Neuroscience,3(2), 170-180. http://dx.doi.org/10.2478/s13380-012-0022-0
Casanova, M. F., Hensley, M. K., Sokhadze, E. M., El-Baz, A. S., Wang, Y, Li, X., & Sears, L. (2014). Effects of weekly low-frequency rTMS on autonomic measures in children with autism spectrum disorder. Frontiers in Human Neuroscience, 8. http://dx.doi.org/10.3389/fnhum.2014.00851
Casanova, M. F., Sokhadze, E., Opris, I., Wang, Y., & Li, X. (2015). Autism spectrum disorders: linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Paediatrica, 104(4), 346-355. http://dx.doi.org/10.1111/apa.12943
Chang, M. C., Parham, L. D., Blanche, E. I., Schell, A., Chou, C. P., Dawson, M., & Clark, F. (2012). Autonomic and behavioral responses of children with autism to auditory stimuli. American Journal of Occupational Therapy, 66(5), 567-576. http://dx.doi.org/10.5014/ajot.2012.004242
Cohen, N., Benjamin, J., Geva, A. B., Matar, M. A., Kaplan, Z., & Kotler, M. (2000). Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attack. Psychiatry Research, 96(1), 1-13. http://dx.doi.org/10.1016/S0165-1781(00)00195-5
Cohen, S., Masyn, K., Mastergeorge, A., & Hessl, D. (2015). Psychophysiological responses to emotional stimuli in children and adolescents with autism and fragile X syndrome. Journal of Clinical Child and Adolescent Psychology, 44(2), 250-263. http://dx.doi.org/10.1080/15374416.2013.843462
Constantino, J. N., & Gruber, C. P. (2005). The Social Responsiveness Scale (SRS) Manual. Los Angeles, CA: Western Psychological Services.
Coronoa, R., Dissanayake, C., Arbelle, S., Wellington, P., & Sigman, M. (1998). Is affect aversive to young children with autism? Behavioral and cardiac responses to experimenter distress. Child Development, 69(6), 1494-1502. http://dx.doi.org/10.1111/j.1467-8624.1998.tb06172.x
Critchley, H. D. (2005).Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493(1), 154-166.
http://dx.doi.org/10.1002/cne.20749
Czéh, B., Welt, T., Fischer, A. K., Erhardt, A., Schmitt, W., Müller, M. B., ... Keck, M. E. (2002). Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biological Psychiatry, 52(11), 1057-1065. http://dx.doi.org/10.1016/S0006-3223(02)01457-9
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London, Biological Sciences, 351(1346), 1413-1420. http://dx.doi.org/10.1098/rstb.1996.0125
Dombroski, B., Kaplan, M., Kotsamanidis-Burg, B., Edelson, S. M., Hensley, M. K., Sokhadze, E.M., & Casanova, M. F. (2014). Effects of ambient prism lenses and visual-motor training on heart rate variability and behavioral outcomes in autism. In K. Siri and T. Lyons (eds.), Cutting-edge therapies for autism (4th ed.) (pp.138-150). New York, NY: Skyhorse Publishing.
Friedman, B. H., & Thayer, J. F. (1998). Anxiety and autonomic flexibility: a cardiovascular approach. Biological Psychology, 49(3), 303-323. http://dx.doi.org/10.1016/S0301-0511(98)00051-9
Filippi, M. M., Oliveri, M., Vernieri, F., Pasqualetti, P., & Rossini, P. M. (2000). Are autonomic signals influencing cortico-spinal motor excitability? A study with transcranial magnetic stimulation. Brain Research, 881(2), 159-164. http://dx.doi.org/10.1016/S0006-8993(00)02837-7
Friedman, B. H. (2007). An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biological Psychology,74(2),185-199. http://dx.doi.org/10.1016/j.biopsycho.2005.08.009
George, M. S., Lisanby, S. H., & Sackeim, H. A. (1999). Transcranial magnetic stimulation: applications in neuropsychiatry. Archives of General Psychiatry, 56(4), 300-311. http://dx.doi.org/10.1001/archpsyc.56.4.300
Gillott, A., Furniss, F., & Walter, A. (2001). Anxiety in high-functioning children with autism. Autism, 5(3), 277-286. http://dx.doi.org/10.1177/1362361301005003005
Hedges, D. W., Salyer, D. L., Higginbotham, B. J., Lund, T. D., Hellewell, J. L., Ferguson, D., & Lephart, E. D. (2002). Transcranial magnetic stimulation (TMS) effects on testosterone, prolactin, and corticosterone in adult male rats. Biological Psychiatry, 51(5), 417-421. http://dx.doi.org/10.1016/S0006-3223(01)01266-5
Helverschou, S. B., & Martinsen, H. (2011). Anxiety in people diagnosed with autism and intellectual disability: recognition and phenomenology. Research in Autism Spectrum Disorders, 5(1), 377-387. http://dx.doi.org/10.1016/j.rasd.2010.05.003
Hensley, M., El-Baz, A., Sokhadze, G., Sears, L., Casanova, M. F., & Sokhadze, E. M. (2012). TMS effects on cardiac autonomic control in children with autism. Psychophysiology, 49, S40.
Hensley, M., El-Baz, A., Casanova, M. F., & Sokhadze, E. (2013). Heart rate variability and cardiac autonomic measures changes during rTMS in autism. Applied Psychophysiology Biofeedback, 38, 238.
Hirstein, W., Iversen, P., & Ramachandran, V. S. (2001). Autonomic responses of autistic children to people and objects. Proceedings of the Royal Society of London, Biological Sciences, 268 (1479), 1883-1888. http://dx.doi.org/10.1098/rspb.2001.1724
Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23(5), 477-501. http://dx.doi.org/10.1016/S0893-133X(00)00159-7
Hutt, C., Forrest, S. J., & Richer, J. (1975). Cardiac arrhythmia and behavior in autistic children. Acta Psychiatrica Scandinaica, 51(5), 361-372. http://dx.doi.org/10.1111/j.1600-0447.1975.tb00014.x
Jansen, L. M., Gispen-de Wied, C. C., van der Gaag, R. J., ten Hove, F., Willemsen-Swinkels, S. W. M., Harteveld, E., & van Engeland, H. (2000). Unresponsiveness to psychosocial stress in a group of autistic-like children, multiple complex developmental disorder. Psychoneuroendocrinology, 25(8), 753-764. http://dx.doi.org/10.1016/S0306-4530(00)00020-2
Jenkins, J., Shajahan, P. M., Lappin, J. M., & Ebmeier, K. P. (2002). Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry, 2(1). http://dx.doi.org/10.1186/1471-244X-2-1
Julu, P. O., Kerr, A. M., Apartipoulos, F., Al-Rawas, S., Engerström, I. W., Engerström, L., ... Hansen, S. (2001). Characterization of breathing and associated central autonomic dysfunction in the Rett disorder. Archives of Disease in Childhood, 85(1), 29-37. http://dx.doi.org/10.1136/adc.85.1.29
Keehn, B., Müller, R. A., & Townsend, J. (2013). Atypical attentional networks and the emergence of autism. Neuroscience and Biobehavioral Reviews, 37(2), 164-183. http://dx.doi.org/10.1016/j.neubiorev.2012.11.014
Kleberg, J. L. (2015). Resting state arousal and functional connectivity in autism spectrum disorder. Journal of Neurophysiology, 113(9), 3035-3037. http://dx.doi.org/10.1152/jn.00292.2014
Kleiger, R. E., Stein, P. K., & Bigger, J. T. Jr. (2005). Heart rate variability: measurement and clinical utility. Annals of Noninvasive Electrocardiology, 10(1), 88-101. http://dx.doi.org/10.1111/j.1542-474X.2005.10101.x
Kushki, A., Drumm, E., Mobarak, M. P., Tanel, N., Dupius, A., Chau, T., & Anagnostou, E. (2013). Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders. PLoS One, 8(4), e59730.
http://dx.doi.org/10.1371/journal.pone.0059730
Kushki, A., Brian, J., Dupius, A., & Anagnostou, E. (2014). Functional autonomic nervous system profile in children with autism spectrum disorder. Molecular Autism, 5(1), 39. http://dx.doi.org/10.1186/2040-2392-5-39
Lacey J. I., & Lacey, B. C. (1970). Some autonomic-central nervous system interrelationships. In P. Black (ed.), Physiological correlates of emotion (pp. 214-236). New York: Academic Press. http://dx.doi.org/10.1016/B978-0-12-102850-3.50016-5
Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview – revised (ADI-R). Los Angeles, CA: Western Psychological Services.
Liss, M., Saulnier, C., Fein, D., & Kinsbourne, M. (2006). Sensory and attention abnormalities in autistic spectrum disorders. Autism, 10(2), 155-172. http://dx.doi.org/10.1177/1362361306062021
Loveland, K. A., Bachevalier, J., Pearson, D. A., & Lane, D. M. (2008). Fronto-limbic functioning in children and adolescents with and without autism. Neuropsychologia, 46(1), 49-62. http://dx.doi.org/10.1016/j.neuropsychologia.2007.08.017
Malliani, A., Pagani, M., & Lombardi, F. (1994). Physiology and clinical implications of variability of cardiovascular parameters with focus on heart rate and blood pressure. American Journal of Cardiology, 73(10), C3-C9. http://dx.doi.org/10.1016/0002-9149(94)90617-3
Ming, X., Julu, P. O., Wark, J., Apartopoulos, F., & Hansen, S. (2004). Discordant mental and physical efforts in an autistic patient. Brain & Development, 26(8), 519-524. http://dx.doi.org/10.1016/j.braindev.2004.02.005
Ming, X., Julu, P. O., Brimacombe, M., Connor, S., & Daniels, M. L. (2005). Reduced cardiac parasympathetic activity in children with autism. Brain & Development, 27(7), 509-516. http://dx.doi.org/10.1016/j.braindev.2005.01.003
Ming, X., Bain, J. M., Smith, D., Brimacombe, M., Gold von-Simson, G., & Axelrod, F. B. (2011). Assessing autonomic dysfunction symptoms in children: a pilot study. Journal of Child Neurology, 26(4), 420-427. http://dx.doi.org/10.1177/0883073810381921
Ming, X., Patel, R., Kang, V., Chokroverty, S., & Julu, P. O. (2016). Respiratory an autonomic dysfunction in children with autism spectrum disorders. Brain & Development, 38(2), 225-232. http://dx.doi.org/10.1016/j.braindev.2015.07.003
Mountcastle, V. B. (2003). Introduction. Computation in cortical columns. Cerebral Cortex, 13(1), 2-4. http://dx.doi.org/10.1093/cercor/13.1.2
Movius, H. L., & Allen, J. J. (2005). Cardiac vagal tone, defensiveness, and motivational style. Biological Psychology, 68(2), 147-162. http://dx.doi.org/10.1016/j.biopsycho.2004.03.019
Orekhova, E. V., & Stroganova, T. A. (2014). Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials. Frontiers in Human Neuroscience, 8. http://dx.doi.org/10.3389/fnhum.2014.00034
Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., ... Piccaluga, E. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59(2), 178-193. http://dx.doi.org/10.1161/01.RES.59.2.178
Palkovitz, R. J., & Wiesenfeld, A. R. (1980). Differential autonomic responses of autistic and normal children. Journal of Autism and Developmental Disorders, 10(3), 347-360. http://dx.doi.org/10.1007/BF02408294
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience--virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232-237. http://dx.doi.org/10.1016/S0959-4388(00)00081-7
Patriquin, M. A., Lorenzi, J., & Scarpa, A. (2013). Relationship between respiratory sinus arrhythmia, heart period, and caregiver-reported language and cognitive delays in children with autism spectrum disorders. Applied Psychophysiology and Biofeedback, 38(3), 203-207. http://dx.doi.org/10.1007/s10484-013-9225-6
Paus, T., Jech, R., Thompson, C. J., Comeau, R., Peters, T., & Evans, A. C. (1997). Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. Journal of Neuroscience, 17(9), 3178-3184.
Porges , S. (1995). Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32(4), 301-318.
http://dx.doi.org/10.1111/j.1469-8986.1995.tb01213.x
Porges, S. W. (2003). The polyvagal theory: phylogenetic contributions to social behavior. Physiology & Behavior, 79(3), 503-513. http://dx.doi.org/10.1016/S0031-9384(03)00156-2
Porges, S. W. (2011). The polyvagal theory: neurophysiological foundations of emotions, attachment, communication, and self-regulation. New York: WW Norton & Co.
Porges, S. W., Doussard-Roosevelt, J. A., Portales, A. L., & Greenspan, S. I. (1996). Infant regulation of the vagal "brake" predicts child behavioral problems: a psychobiological model of social behavior. Developmental Psychobiology, 29(8), 697-712.http://dx.doi.org/10.1002/(SICI)1098-2302(199612)29:8%3C697::AID-DEV5%3E3.0.CO;2-O
Rees, C. A. (2014). Lost among trees? The autonomic nervous system and paediatrics. Achives of Disease in Childhood, 99(6), 552-562. http://dx.doi.org/10.1136/archdischild-2012-301863
Rogers, S. J., & Ozonoff, S. (2005). Annotation: what do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 46(12), 1255-1268. http://dx.doi.org/10.1111/j.1469-7610.2005.01431.x
Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2(5), 255-267. http://dx.doi.org/10.1034/j.1601-183X.2003.00037.x
Seminowicz, D. A., Mayberg, H. S., McIntosh, A. R., Goldapple, K., Kennedy, S., Segal, Z., & Rafi-Tari, S. (2004). Limbic-frontal circuitry in major depression: a path modeling meta-analysis. NeuroImage, 22(1), 409-418.
http://dx.doi.org/10.1016/j.neuroimage.2004.01.015
Schoen, S. A., Miller, L. J., Brett-Green, B. A., & Nielsen, D. M. (2009). Physiological and behavioral differences in sensory processing: a comparison of children with autism spectrum disorder and sensory modulation disorder. Frontiers in Integrative Neuroscience, 3. http://dx.doi.org/10.3389/neuro.07.029.2009
Smeekens, I., Didden, R., & Verhoeven, E. W. (2015). Exploring the relationship of autonomic and endocrine activity with social functioning in adults with autism spectrum disorders. Journal of Autism and Developmental Disorders, 45(2), 495-505. http://dx.doi.org/10.1007/s10803-013-1947-z
Sohn, J. H., Sokhadze, E., & Watanuki, S. (2001). Electrodermal and cardiovascular manifestations of emotions in children. Journal of Physiological Anthropology and Applied Human Science, 20(2), 55-64. http://dx.doi.org/10.2114/jpa.20.55
Sokhadze, E. M., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009a). Effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) on induced gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619-634. http://dx.doi.org/10.1007/s10803-008-0662-7
Sokhadze, E., Baruth, J., Tasman, A., Sears, L., Mathai, G., El-Baz, A., & Casanova, M. F. (2009b). Event-related potential study of novelty processing abnormalities in autism. Applied Psychophysiology and Biofeedback, 34(1), 37-51. http://dx.doi.org/10.1007/s10484-009-9074-5
Sokhadze, G., Kaplan, M., Edelson, S. M., … Casanova, M. F. (2012). Effects of ambient prism lenses on autonomic reactivity to emotional stimuli in autism. Applied Psychophysiology and Biofeedback, 37, 303.
Sokhadze, E. M., Casanova, M. F., El-Baez, A. S., Farag, H. E., Li, X., & Wang, Y. (2016). TMS-based neuromodulation of evoked and induced gamma oscillations and event-related potentials in children with autism. NeuroRegulation, 3(3), 101-126. http://dx.doi.org/10.15540/nr.3.3.101
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201-216. http://dx.doi.org/10.1016/S0165-0327(00)00338-4
Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141-153 http://dx.doi.org/10.1007/s12160-009-9101-z
Thayer, J. F., & Friedman, B. H. (2002). Stop that! Inhibition, sensitization, and their neurovisceral concomitants. Scandinavian Journal of Psychology, 43(2), 123-130. http://dx.doi.org/10.1111/1467-9450.00277
Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J. , & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 36(2), 747-756. http://dx.doi.org/10.1016/j.neubiorev.2011.11.009
Toichi, M., Kubota, Y., Murai, T., Kamio, Y., Sakihama, M., Toriuchi, T., … Miyoshi, K. (1999). The influence of psychotic states on the autonomic nervous system in schizophrenia. International Journal of Psychophysiology, 31(2), 147-154.
http://dx.doi.org/10.1016/S0167-8760(98)00047-6
Toichi, M., & Kamio, Y. (2003). Paradoxical autonomic response to mental tasks in autism. Journal of Autism and Developmental Disorders, 33(4), 417-426. http://dx.doi.org/10.1023/A:1025062812374
Udupa, K., Sathyaprabha, T. N., Thirthalli, J., Kishore, K. R., Raju, T. R., & Gangadhar, B. N. (2007). Modulation of cardiac autonomic functions in patients with major depression treated with repetitive transcranial magnetic stimulation. Journal of Affect Disorders, 104(1-3), 231-236. http://dx.doi.org/10.1016/j.jad.2007.04.002
van Engeland, H. (1984). The electrodermal orienting response to auditive stimuli in autistic children, normal children, mentally retarded children, and child psychiatric patients. Journal of Autism and Developmental Disorders, 14(3), 261-279. http://dx.doi.org/10.1007/BF02409578
Wagner, T., Rushmore, J., Eden, U., & Valero-Cabre, A. (2009). Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex, 45(9), 1025-1034. http://dx.doi.org/10.1016/j.cortex.2008.10.002
Wang, Y., Hensley, M. K., Tasman, A., Sears, L., Casanova, M. F., & Sokhadze, E. M. (2016). Heart rate variability and skin conductance during repetitive TMS course in children with autism. Applied Psychophysiology and Biofeedback, 41(1), 47-60.
http://dx.doi.org/10.1007/s10484-015-9311-z
Williams, L. M., Brown, K. J., Das, P., Boucsein, W., Sokolov, E. N., Brammer, M. J., … Gordon, E. (2004). The dynamics of cortico-amygdala and autonomic activity over the experimental time course of fear perception. Brain Research. Cognitive Brain Research, 21(1), 114-123. http://dx.doi.org/10.1016/j.cogbrainres.2004.06.005
Yoshida, T., Yoshino, A., Kobayashi, Y., Inoue, M., Kamakura, K., & Nomura, S. (2001). Effects of slow repetitive transcranial magnetic stimulation on heart rate variability according to power spectrum analysis. Journal of the Neurological Sciences, 184(1), 77-80. http://dx.doi.org/10.1016/S0022-510X(00)00505-0
Zahn, T. P., Rumsey, J. M., & Van Kammen, D. P. (1987). Autonomic nervous system activity in autistic, schizophrenic, and normal men: effects of stimulus significance. Journal of Abnormal Psychology, 96(2), 135-144.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).