Event-related Potentials (ERP) in Cognitive Neuroscience Research and Applications

Authors

  • Estate M Sokhadze Department of Biomedical Sciences University of South Carolina School of Medicine-Greenville, Greenvile, SC 29615
  • Manuel F Casanova Endowed Chair in Neurotherapeutics, Professor, Department of Biomedical Sciences, University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615
  • Emily L Casanova Post-doc fellow, University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615
  • Eva Lamina Research Specialist,University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615
  • Desmond P Kelly Vice Chair, professor, Department of Pediatrics, Children's Hospital, Greenville Health System, Greenville, SC29615, USA
  • Irma Khachidze Post-doctoral fellow at Centre of Experiemntal Biomedicine, Gotua str 14, Tbilis, Republic of Georgia,

DOI:

https://doi.org/10.15540/nr.4.1.14

Keywords:

ERP, qEEG, psychopathology, biomarkers, cognitive neuroscience

Abstract

This review is aimed at exploring the usefulness of measuring event-related potential (ERP) in cognitive tests and discusses several applications of the ERP technique.  Analysis of ERP components is one of the most informative dynamic methods of investigation and monitoring of information processing stages in the human brain.  Amplitude and latency of ERP components at specified topographies reflect early sensory perception processes and higher level processing including attention, cortical inhibition, memory update, error monitoring, and other cognitive activities.  ERPs provide a method of studying cognitive processes in typical subjects, as well as a sensitive instrument to assess differences in individuals with neuro- and psychopathologies.  Despite significant advances in functional neuroimaging, the ERP measure still represents an important tool for brain research in psychiatry, as many psychiatric diseases correlate with certain altered patterns of ERPs.  Such ERP alterations can serve as valid biological markers for functional diagnostic or for better understanding of the cognitive functions which are disturbed in psychiatric disorders.  Application of ERPs in psychiatric treatment research is an approach aimed at validation of specific ERP measures as sensitive functional outcomes of experimental neuromodulation interventions such as rTMS and neurofeedback.  Also discussed are additional aspects of ERP usefulness in psychiatry research and treatment.

Author Biographies

Estate M Sokhadze, Department of Biomedical Sciences University of South Carolina School of Medicine-Greenville, Greenvile, SC 29615

Research professor, Department of Biomedical Sciences, University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615

Gratis associate professor, Department of Psychiatry & behavioral Sciences, University of Louisville, Louisville, KY 40202

Manuel F Casanova, Endowed Chair in Neurotherapeutics, Professor, Department of Biomedical Sciences, University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615

Endowed Chair in Neurotherapeutics, Professor, Department of Biomedical Sciences, University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615

Emily L Casanova, Post-doc fellow, University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615

Post-doc fellow, University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615

Eva Lamina, Research Specialist,University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615

PhD, Research Specialist,University of South Carolina School of Medicine-Greenville, Greenville, SC, 29615

Desmond P Kelly, Vice Chair, professor, Department of Pediatrics, Children's Hospital, Greenville Health System, Greenville, SC29615, USA

Vice Chair, professor, Department of Pediatrics, Children's Hospital, Greenville Health System, Greenville, SC29615, USA

Irma Khachidze, Post-doctoral fellow at Centre of Experiemntal Biomedicine, Gotua str 14, Tbilis, Republic of Georgia,

Post-doctoral fellow at Centre of Experiemntal Biomedicine, Gotua str 14, Tbilis, Republic of Georgia

References

Alho, K., Lavikainen, J., Reinikainen, K., Sams, M., & Näätänen R. (1990). Event-related brain potentials in selective listening to frequent and rare stimuli. Psychophysiology, 27(1), 73–86. http://dx.doi.org/10.1111/j.1469-8986.1990.tb02183.x

Attias, J., Bleich, A., Furman, V., & Zinger, Y. (1996). Event-related potentials in post-traumatic stress disorder of combat origin. Biological Psychiatry, 40(5), 373–381. https://dx.doi.org/10.1016/0006-3223(95)00419-X

Banaschewski, T., Brandeis, D., Heinrich, H., Albrecht, B., Brunner, E., & Rothenberger, A. (2003). Association of ADHD and conduct disorder – brain electrical evidence for the existence of a distinct subtype. The Journal of Child Psychology and Psychiatry, 44(3), 356–376. http://dx.doi.org /10.1111/1469-7610.00127

Banaschewski, T., Roessner, V., Dittmann, R. W., Santosh, P. J., & Rothenberger, A. (2004). Non-stimulant medications in the treatment of ADHD. European Child & Adolescent Psychiatry, 13(Suppl. 1), i102–i116. http://dx.doi.org/10.1007/s00787-004-1010-x

Barry, R. J., Johnstone, S. J., & Clarke, A. R. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clinical Neurophysiology, 114(2), 184–198. http://dx.doi.org/10.1016/S1388-2457(02)00363-2

Baruth, J. M., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., Sears, L., & Sokhadze, E. (2010). Low-frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorder. Journal of Neurotherapy, 14(3), 179–194. http://dx.doi.org/10.1080 /10874208.2010.501500

Baruth, J. M., Casanova, M. F., Sears, L., & Sokhadze, E. (2010). Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Translational Neuroscience, 1(2), 177–187. http://dx.doi.org/10.2478 /v10134-010-0024-9

Baruth, J., Williams, E., Sokhadze, E., El-Baz, A., Sears, L., & Casanova, M. F. (2011). Repetitive transcranial stimulation (rTMS) improves electroencephalographic and behavioral outcome measures in autism spectrum disorders (ASD). Autism Science Digest, 1(1), 52–57.

Başar, E., & Güntekin, B. (2008). A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Research, 1235, 172–193. http://dx.doi.org/10.1016 /j.brainres.2008.06.103

Bates, A. T., Liddle, P. F., Kiehl, K. A., & Ngan, E. T. C. (2004). State dependent changes in error monitoring in schizophrenia. Journal of Psychiatric Research, 38(3), 347–356. http://dx.doi.org/10.1016/j.jpsychires.2003.11.002

Baudena, P., Halgen, E., Heit, G., & Clarke, J. M. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalography and Clinical Neurophysiology, 94(4), 251–264. http://dx.doi.org/10.1016/0013-4694(95)98476-O

Belmonte, M. K., Cook, E. H., Anderson, G. M., Rubenstein, J. L. R., Greenough, W. T., Beckel-Mitchener, A., … Tierney, E. (2004). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9(7), 646–663. http://dx.doi.org /10.1038/sj.mp.4001499

Bleich, A. V., Attias, J., & Furnam, V. (1996). Effect of repeated visual traumatic stimuli on the event-related P3 brain potential in post-traumatic stress disorder. International Journal of Neuroscience, 85(1–2), 45–55. http://dx.doi.org/10.3109 /00207459608986350

Blomhoff, S., Reinvang, I., & Malt, U. F. (1998). Event-related potentials to stimuli with emotional impact in posttraumatic stress patients. Biological Psychiatry, 44(10), 1045–1053. http://dx.doi.org/10.1016/S0006-3223(98)00058-4

Bogte, H., Flamma, B., van der Meere, J., & van Engeland, H. (2007). Post-error adaptation in adults with high functioning autism. Neuropsychologia, 45(8), 1707–1714. http://dx.doi.org /10.1016/j.neuropsychologia.2006.12.020

Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222. http://dx.doi.org/10.1016/S1364-6613(00)01483-2

Casanova, M., Baruth, J., El-Baz, A., Tasman, A., Sears, L., & Sokhadze, E. (2012). Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Translational Neuroscience, 3(2), 170–180. http://dx.doi.org/10.2478/s13380-012-0022-0

Charles, G., Hansenne, M., Ansseau, M., Pitchot, W., Machowski, R., Schittecatte, M., & Wilmotte, J. (1995). P300 in posttraumatic stress disorder. Neuropsychobiology, 32(2), 72–74. http://dx.doi.org/10.1159/000119216

Clark, V. P., Fan, S., & Hillyard, S. A. (1994). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human Brain Mapping, 2(3), 170–187. http://dx.doi.org/10.1002/hbm.460020306

Coben, R., Chabot, R. J., & Hirshberg, L. (2013). EEG analyses in the assessment of autistic disorders. In M. F. Casanova, A. S. El-Baz, & J. S. Suri (Eds.), Imaging the brain in autism (pp. 349–370). New York, NY: Springer. http://dx.doi.org/10.1007 /978-1-4614-6843-1_12

Coles, M. G. H., & Rugg, M. D. (1995). Event-related brain potentials: An introduction. In M. D. Rugg & M. G. H. Coles (Eds.), Electrophysiology of mind: Event-related brain potentials and cognition (pp. 1–26). Oxford, UK: Oxford University Press.

Coles, M. G. H., Scheffers, M. K., & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biological Psychology, 56(3), 173–189. http://dx.doi.org/10.1016/S0301-0511(01)00076-X

Conley, E. M., Michalewski, H. J., & Starr, A. (1999). The N100 auditory cortical evoked potential indexes scanning of auditory short-term memory. Clinical Neurophysiology, 110(12), 2086–2093. http://dx.doi.org/10.1016/S1388-2457(99)00183-2

Courchesne, E., Courchesne, R. Y., Hicks, G., & Lincoln, A. J. (1985a). Functioning of the brain-stem auditory pathway in non-retarded autistic individuals. Electroencephalography and Clinical Neurophysiology, 61(6), 491–501. http://dx.doi.org /10.1016/0013-4694(85)90967-8

Courchesne, E., Lincoln, A. J., Kilman, B. A., & Galambos, R. (1985b). Event-related brain potential correlates of the processing of novel visual and auditory information in autism. Journal of Autism and Developmental Disorders, 15(1), 55–76. http://dx.doi.org/10.1007/BF01837899

Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., & Grillon, C. (1989). Pathophysiologic findings in nonretarded autism and receptive developmental language disorder. Journal of Autism and Developmental Disorders, 19(1), 1–17. http://dx.doi.org/10.1007/BF02212714

Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23(2–3), 153–170. http://dx.doi.org/10.1016 /j.ijdevneu.2005.01.003

Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115(4), 732–744. http://dx.doi.org/10.1016/j.clinph.2003.11.021

Dawson, G., Meltzoff, A. N., Osterling, J., Rinaldi, J., & Brown, E. (1998). Children with autism fail to orient to naturally occurring social stimuli. Journal of Autism and Developmental Disorders, 28(6), 479–485. http://dx.doi.org /10.1023/A:1026043926488

de Bruijn, E. R. A., Grootens, K. P., Verkes, R. J., Buchholz, V., Hummelen, J. W., & Hulstijn, W. (2006). Neural correlates of impulsive responding in borderline personality disorder: ERP evidence for reduced action monitoring. Journal of Psychiatric Research, 40(5), 428–437. http://dx.doi.org/10.1016 /j.jpsychires.2005.09.004

Devinsky, O., & Luciano, D. (1993). The contributions of cingulate cortex to human behavior. I. In M. Gabriel & B. A. Vogt (Eds.), Neurobiology of cingulate cortex and limbic thalamus: A comprehensive handbook (pp. 527–556). Cambridge, MA: Birkhauser. http://dx.doi.org/10.1007/978-1-4899-6704-6_19

Dien, J., Spencer, K. M., & Donchin, E. (2003). Localization of the event-related potential novelty response as defined by principal components analysis. Cognitive Brain Research, 17(3), 637–650. http://dx.doi.org/10.1016/S0926-6410(03)00188-5

Dimoska, A., Johnstone, S. J., Barry, R. J., & Clarke, A. R. (2003). Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biological Psychiatry, 54(12), 1345–1354. http://dx.doi.org/10.1016/S0006-3223(03)00703-0

Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357–374. http://dx.doi.org/10.1017 /S0140525X00058027

Donkers, F. C. L., & van Boxtel, G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56(2), 165–176. http://dx.doi.org /10.1016/j.bandc.2004.04.005

Drake, M. E., Pakalnis, A., Phillips, B., Padamadan, H., & Hietter, S. A. (1991). Auditory evoked potentials in anxiety disorder. Clinical Electroencephalography, 22(2), 97–101. http://dx.doi.org/10.1177/155005949102200209

Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Näätänen, R., … Van Petten, C. (2009). Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120(11), 1883–1908. http://dx.doi.org/10.1016/j.clinph.2009.07.045

Elting, J. W., Maurits, N., van Weerden, T., Spikman, J., De Keyser, J., & van der Naalt, J. (2008). P300 analysis techniques in cognitive impairment after brain injury: Comparison with neurophsychological and imaging data. Brain Injury, 22(11), 870–881. http://dx.doi.org/10.1080 /02699050802403581

Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51(2–3), 87–107. http://dx.doi.org/10.1016/S0301-0511(99)00031-9

Felmingham, K. L., Bryant, R. A., Kendall, C., & Gordon, E. (2002). Event-related potential dysfunction in posttraumatic stress disorder: The role of numbing. Psychiatry Research, 109(2), 171–179. http://dx.doi.org/10.1016/S0165-1781(02)00003-3

Ford, J. M. (1999). Schizophrenia: The broken P300 and beyond. Psychophysiology, 36(6), 667–682. http://dx.doi.org/10.1111 /1469-8986.3660667

Ford, J. M., Mathalon, D. H., Kalba, S., Whitfield, S., Faustman, W. O., & Roth, W. T. (2001). Cortical responsiveness during talking and listening in schizophrenia: An event-related brain potential study. Biological Psychiatry, 50(7), 540–549. http://dx.doi.org/10.1016/S0006-3223(01)01166-0

Franken, I. H. A., van Strien, J. W., Franzek, E. J., & van de Wetering, B. J. (2007). Error-processing deficits in patients with cocaine dependence. Biological Psychology, 75(1), 45–51. http://dx.doi.org/10.1016/j.biopsycho.2006.11.003

Friedman, D., Simpson, G. V., & Hamberger, M. (1993). Age-related changes in scalp topography to novel and target stimuli. Psychophysiology, 30(4), 383–396. http://dx.doi.org /10.1111/j.1469-8986.1993.tb02060.x

Gaeta, H., Friedman, D., & Hunt, G. (2003). Stimulus characteristics and task category dissociate the anterior and posterior aspects of the novelty P3. Psychophysiology, 40(2), 198–208. http://dx.doi.org/10.1111/1469-8986.00022

Gallinat, J., Mulert, C., Bajbouj, M., Herrmann, W. M., Schunter, J., Senkowski, D., … Winterer, G. (2002). Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia. NeuroImage. 17(1), 110–127.

García-Larrea, L., Lukaszewicz, A.-C., & Mauguiére, F. (1992). Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia, 30(8), 723–741. http://dx.doi.org/10.1016 /0028-3932(92)90042-K

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385–390. http://dx.doi.org/10.1111/j.1467-9280.1993.tb00586.x

Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science, 11(1), 1–6. http://dx.doi.org/10.1111 /1467-9280.00206

Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3(5), 516–520. http://dx.doi.org/10.1038/74899

Gomez-Gonzales, C. M., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7(1), 41–51. http://dx.doi.org/10.1007/BF01184836

Goto, Y., Brigell, M. G., & Parmeggiani, L. (1996). Dipole-modeling of the visual evoked P300. Journal of Psychosomatic Research, 41(1), 71–79. http://dx.doi.org /10.1016/0022-3999(96)00062-1

Halgren, E., Marinkovic, K., & Chauvel, P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106(2), 156–164. http://dx.doi.org/10.1016/S0013-4694(97)00119-3

Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., ... Hillyard, S. A. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372(6506), 543–546. http://dx.doi.org/10.1038/372543a0

Henderson, H., Schwartz, C., Mundy, P., Burnette, C., Sutton, S., Zahka, N., & Pradella, A. (2006). Response monitoring, the error-related negativity, and differences in social behavior in autism. Brain and Cognition, 61(1), 96–109. http://dx.doi.org /10.1016/j.bandc.2005.12.009

Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations. Neuroscience & Biobehavioral Reviews, 25(6), 465–476. http://dx.doi.org/10.1016/S0149-7634(01)00027-6

Herrmann, M. J., Römmler, J., Ehlis, A.-C., Heidrich, A., & Fallgatter, A. J. (2004). Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Cognitive Brain Research, 20(2), 294–299. http://dx.doi.org /10.1016/j.cogbrainres.2004.02.013

Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 781–787. http://dx.doi.org /10.1073/pnas.95.3.781

Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182(4108), 177–180. http://dx.doi.org/10.1126 /science.182.4108.177

Hoeksma, M. R., Kemner, C., Kenemans, J. L., & van Engeland, H. (2006). Abnormal selective attention normalizes P3 amplitudes in PDD. Journal of Autism and Developmental Disorders, 36(5), 643–654. http://dx.doi.org/10.1007/s10803-006-0102-5

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709. http://dx.doi.org/10.1037/0033-295X.109.4.679

Hopf, J.-M., Vogel, E., Woodman, G., Heinze, H.-J., & Luck, S. J. (2002). Localizing visual discrimination processes in time and space. Journal of Neurophysiology, 88(4), 2088–2095.

Jeste, S. S., & Nelson, C. A. (2009). Event related potentials in the understanding of autism spectrum disorders: An analytical review. Journal of Autism and Developmental Disorders, 39(3), 495–510. http://dx.doi.org/10.1007/s10803-008-0652-9

Johannes, S., Wieringa, B. M., Nager, W., Rada, D., Dengler, R., Emrich, H. M., ... Dietrich, D. E. (2001). Discrepant target detection and action monitoring in obsessive-compulsive disorder. Psychiatry Research, 108(2), 101–110. http://dx.doi.org/10.1016/S0925-4927(01)00117-2

Johnstone, S. J., & Barry, R. J. (1996). Auditory event-related potentials to a two-tone discrimination paradigm in attention deficit hyperactivity disorder. Psychiatry Research, 64(3), 179–192. http://dx.doi.org/10.1016/S0165-1781(96)02893-4

Johnston, K., Madden, A. K., Bramham, J., & Russell, A. J. (2011). Response inhibition in adults with autism spectrum disorder compared to attention deficit/hyperactivity disorder. Journal of Autism and Developmental Disorders, 41(7), 903–912. http://dx.doi.org/10.1007/s10803-010-1113-9

Jonkman, L. M., Kemner, C., Verbaten, M. N., Koelega, H. S., Camfferman, G., van der Gaag, R.-J., … van Engeland, H. (1997). Effects of methylphenidate on event-related potentials and performance of attention-deficit hyperactivity disorder children in auditory and visual selective attention tasks. Biological Psychiatry, 41(6), 690–702. http://dx.doi.org /10.1016/S0006-3223(96)00115-1

Jonkman, L. M., Kenemans, J. L., Kemner, C., Verbaten, M. N., & van Engeland, H. (2004). Dipole source localization of event-related brain activity indicative of an early visual selective attention deficit in ADHD children. Clinical Neurophysiology, 115(7), 1537–1549. http://dx.doi.org/10.1016 /j.clinph.2004.01.022

Just, M. A., Cherkassky, V., Keller, T.A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127(8), 1811–1821. http://dx.doi.org /10.1093/brain/awh199

Karl, A., Malta, L. S., & Maercker, A. (2006). Meta-analytic review of event-related potential studies in post-traumatic stress disorder. Biological Psychology, 71(2), 123–147. https://dx.doi.org/10.1016/j.biopsycho.2005.03.004

Katayama, J., & Polich, J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35(1), 23–33. http://dx.doi.org/10.1111/1469-8986.3510023

Kemner, C., van der Gaag, R. J., Verbaten, M., & van Engeland, H. (1999). ERP differences among subtypes of pervasive developmental disorders. Biological Psychiatry, 46(6), 781–789. http://dx.doi.org/10.1016/S0006-3223(99)00003-7

Kenemans, J. L., Kok, A., & Smulders, F. T. Y. (1993). Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements. Electroencephalography and Clinical Neurophysiology, 88(1), 51–63. http://dx.doi.org/10.1016 /0168-5597(93)90028-N

Kimble, M., Kaloupek, D., Kaufman, M., & Deldin, P. (2000). Stimulus novelty differentially affects attentional allocation in PTSD. Biological Psychiatry, 47(10), 880–890. http://dx.doi.org/10.1016/S0006-3223(99)00258-9

Klin, A., Jones, W., Schultz, R., & Volkmar, F. (2003). The enactive mind, or from actions to cognition: Lessons from autism. Philosophical Transactions of the Royal Society B, 358(1430), 345–360. http://dx.doi.org/10.1098 /rstb.2002.1202

Klorman, R., Salzman, L. F., Bauer, L. O., Coons, H. W., Borgstedt, A. D., & Halpern, W. I. (1983). Effects of two doses of methylphenidate on cross-situational and borderline hyperactive children’s evoked potentials. Electroencephalography and Clinical Neurophysiology, 56(2), 169–185. http://dx.doi.org/10.1016/0013-4694(83)90071-8

Klorman, R., Salzman, L. F., Pass, H. L., Borgstedt, A. D., & Dainer, K. B. (1979). Effects of methylphenidate on hyperactive children's evoked responses during passive and active attention. Psychophysiology, 16(1), 23–29. http://dx.doi.org/10.1111/j.1469-8986.1979.tb01432.x

Knight, R. T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography and Clinical Neurophysiology, 59(1), 9–20. http://dx.doi.org /10.1016/0168-5597(84)90016-9

Knight, R. T. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383(6597), 256–259. http://dx.doi.org/10.1038/383256a0

Knight, R. T. (1997). Distributed cortical network for visual attention. Journal of Cognitive Neuroscience, 9(1), 75–91. http://dx.doi.org/10.1162/jocn.1997.9.1.75

Kolassa, I.-T., Musial, F., Mohr, A., Trippe, R. H., & Miltner, W. H. R. (2005). Electrophysiological correlates of threat processing in spider phobics. Psychophysiology, 42(5), 520–530. http://dx.doi.org/10.1111/j.1469-8986.2005.00315.x

Lenz, D., Krauel, K., Schadow, J., Baving, L., Duzel, E., & Herrmann, C. S. (2008). Enhanced gamma-band activity in ADHD patients lacks correlation with memory performance found in healthy children. Brain Research, 1235, 117–132. http://dx.doi.org/10.1016/j.brainres.2008.06.023

Luck, S. J., Heinze, H. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalography and Clinical Neurophysiology, 75(6), 528–542. http://dx.doi.org/10.1016 /0013-4694(90)90139-B

Luu, P., Flaisch, T., & Tucker, D. M. (2000). Medial frontal cortex in action monitoring. The Journal of Neuroscience, 20(1), 464–469.

Luu, P., Tucker, D. M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14(1), 47–53. http://dx.doi.org/10.1111/1467-9280.01417

Markela-Lerenc, J., Ille, N., Kaiser, S., Fiedler, P., Mundt, C., & Weisbrod, M. (2004). Prefrontal-cingulate activation during executive control: Which comes first? Cognitive Brain Research, 18(3), 278–287. http://dx.doi.org/10.1016 /j.cogbrainres.2003.10.013

Mathalon, D. H., Fedor, M., Faustman, W. O., Gray, M., Askari, N., & Ford, J. M. (2002). Response-monitoring dysfunction in schizophrenia: An event-related brain potential study. Journal of Abnormal Psychology, 111(1), 22–41. http://dx.doi.org /10.1037/0021-843X.111.1.22

McFarlane, A. C., Weber, D. L., & Clark, C. R. (1993). Abnormal stimulus processing in posttraumatic stress disorder. Biological Psychiatry, 34(5), 311–320. http://dx.doi.org /10.1016/0006-3223(93)90088-U

Mecklinger, A., Maess, B., Opitz, B., Pfeifer, E., Cheyne, D., & Weinberg, H. (1998). A MEG analysis of the P300 in visual discrimination tasks. Electroencephalography and Clinical Neurophysiology, 108(1), 45–66. http://dx.doi.org/10.1016 /S0168-5597(97)00092-0

Metzger, L. J., Orr, S. P., Lasko, N. B., McNally, R. J., & Pitman, R. K. (1997). Seeking the source of emotional Stroop interference effects in PTSD: A study of P3s to traumatic words. Integrative Physiological and Behavioral Science, 32(1), 43–51. http://dx.doi.org/10.1007/BF02688612

Metzger, L. J., Orr, S. P., Lasko, N. B., & Pitman, R. K. (1997). Auditory event-related potentials to tone stimuli in combat-related posttraumatic stress disorder. Biological Psychiatry, 42(11), 1006–1115. http://dx.doi.org/10.1016/S0006-3223(97)00138-8

Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Archives of Neurology, 64(7), 945–950. http://dx.doi.org/10.1001/archneur.64.7.945

Mundy, P. (1995). Joint attention and social-emotional approach behavior in children with autism. Development and Psychopathology, 7(1), 63–82. http://dx.doi.org/10.1017 /S0954579400006349

Mundy, P. (2003). Annotation: The neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry, 44(6), 793–809. http://dx.doi.org/10.1111/1469-7610.00165

Mundy, P., & Neal, A. R. (2001). Neural plasticity, joint attention, and a transactional social-orienting model of autism. International Review of Research in Mental Retardation, 23, 139–168. http://dx.doi.org/10.1016/S0074-7750(00)80009-9

Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313–329. http://dx.doi.org/10.1016 /0001-6918(78)90006-9

Näätänen, R., & Michie, P. T. (1979). Early selective-attention effects on the evoked potential: A critical review and reinterpretation. Biological Psychology, 8(2), 81–136. http://dx.doi.org/10.1016/0301-0511(79)90053-X

Näätänen, R., Schröger, E., Karakas, S., Tervaniemi, M., & Paavilainen, P. (1993). Development of a memory trace for a complex sound in the human brain. NeuroReport, 4(5), 503–506. http://dx.doi.org/10.1097/00001756-199305000-00010

Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P. H., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38(5), 752–760. http://dx.doi.org/10.1111/1469-8986.3850752

Novak, G., Ritter, W., & Vaughan, H. G., Jr. (1992). Mismatch detection and the latency of temporal judgments. Psychophysiology, 29(4), 398–411. http://dx.doi.org/10.1111 /j.1469-8986.1992.tb01713.x

Otten, L. J., & Rugg, M. D. (2005). Interpreting event-related brain potentials. In T. C. Handy (Ed.), Event-related potentials: A methods handbook (pp. 3–16). Cambridge, MA: The MIT Press.

Overbeek, T. J. M., Nieuwenhuis, S. T., & Ridderinkhof, K. R. (2005). Dissociable components of error processing. Journal of Psychophysiology, 19(4), 319–329. http://dx.doi.org /10.1027/0269-8803.19.4.319

Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9(4), 456–479. http://dx.doi.org/10.1097/00004691-199210000-00002

Polich, J. (2003). Theoretical overview of P3a and P3b. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (pp. 83–98). Boston, MA: Kluwer Academic Press. http://dx.doi.org/10.1007/978-1-4615-0294-4_5

Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. http://dx.doi.org/10.1016/j.clinph.2007.04.019

Polich, J., & Herbst, K. L. (2000). P300 as a clinical assay: Rationale, evaluations, and findings. International Journal of Psychophysiology, 38(1), 3–19. http://dx.doi.org/10.1016 /S0167-8760(00)00127-6

Potts, G. F., Dien, J., Harty-Speiser, A. L., McDougal, L. M., & Tucker, D. M. (1998). Dense sensor array topography of the event-related potential to task-relevant auditory stimuli. Electroencephalography and Clinical Neurophysiology, 106(5), 444–456. http://dx.doi.org/10.1016/S0013-4694(97)00160-0

Potts, G. F., Liotti, M., Tucker, D. M., & Posner, M. I. (1996). Frontal and inferior temporal cortical activity in visual target detection: Evidence from high spatially sampled event-related potentials. Brain Topography, 9(1), 3–14. http://dx.doi.org /10.1007/BF01191637

Potts, G. F., Patel, S. H., & Azzam, P. N. (2004). Impact of instructed relevance on the visual ERP. International Journal Psychophysiology, 52(2), 197–209. http://dx.doi.org/10.1016 /j.ijpsycho.2003.10.005

Pritchard, W. S. (1981). Psychophysiology of P300. Psychological Bulletin, 89(3), 506–540. http://dx.doi.org/10.1037/0033-2909.89.3.506

Pritchard, W. S. (1986). Cognitive event-related potential correlates of schizophrenia. Psychological Bulletin, 100(1), 43–66. http://dx.doi.org/10.1037/0033-2909.100.1.43

Ridderinkhof, K. R., Ullsperger, M., Crone, E.A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443–447. http://dx.doi.org /10.1126/science.1100301

Rogers, R. L., Basile, L. F. H., Papanicolaou, A. C., & Eisenberg, H. M. (1993). Magnetoencephalography reveals two distinct sources associated with late positive evoked potentials during visual oddball task. Cerebral Cortex, 3(2), 163–169. http://dx.doi.org/10.1093/cercor/3.2.163

Ruchsow, M., Spitzer, M., Grön, G., Grothe, J., & Kiefer, M. (2005). Error processing and impulsiveness in normals: Evidence from event-related potentials. Cognitive Brain Research, 24(2), 317–325. http://dx.doi.org/10.1016 /j.cogbrainres.2005.02.003

Satterfield, J. H., Schell, A. M., & Nicholas, T. (1994). Preferential neural processing of attended stimuli in attention-deficit/hyperactivity disorder and normal boys. Psychophysiology, 31(1), 1–10. http://dx.doi.org/10.1111 /j.1469-8986.1994.tb01018.x

Schienle, A., Köchel, A., & Leutgeb, V. (2011). Frontal late positivity in dental phobia: A study on gender differences. Biological Psychology, 88(2–3), 263–269. http://dx.doi.org /10.1016/j.biopsycho.2011.08.010

Smith, J. L., Johnstone, S. J., & Barry, R. J. (2004). Inhibitory processing during the Go/NoGo task: An ERP analysis of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 115(6), 1320–1331. http://dx.doi.org /10.1016/j.clinph.2003.12.027

Sokhadze, E., Baruth, J., El-Baz, A., Horrell, T., Sokhadze, G., Carroll, T., … Casanova, M. F. (2010). Impaired error monitoring and correction function in autism. Journal of Neurotherapy, 14(2), 79–95. http://dx.doi.org /10.1080/10874201003771561

Sokhadze, E. M., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., & Casanova, M. F. (2012a). Prefrontal neuromodulation using rTMS improves error monitoring and correction functions in autism. Applied Psychophysiology and Biofeedback, 37(2), 91–102. http://dx.doi.org/10.1007 /s10484-012-9182-5

Sokhadze, E. M., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., Williams, E., … Casanova, M. F. (2012b). Event-related potential study of attention regulation during illusory figure categorization task in ADHD, autism spectrum disorder, and typical children. Journal of Neurotherapy, 16(1), 12–31. http://dx.doi.org/10.1080/10874208.2012.650119

Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., … Casanova, M. F. (2010). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Applied Psychophysiology and Biofeedback, 35(2), 147–161. http://dx.doi.org/10.1007 /s10484-009-9121-2

Sokhadze, E., Baruth, J., Tasman, A., Sears, L., Mathai, G., El-Baz, A., & Casanova, M. F. (2009). Event-related potential study of novelty processing abnormalities in autism. Applied Psychophysiology and Biofeedback, 34(1), 37–51. http://dx.doi.org/10.1007/s10484-009-9074-5

Sokhadze, E. M., Casanova, M. F., & Baruth, J. (2013). Transcranial magnetic stimulation in autism spectrum disorders. In L. Alba-Ferrara (Ed.), Transcranial magnetic stimulation: Methods, clinical uses and effects on the brain (pp. 219–231). New York, NY: NOVA Science Publishers, Inc.

Sokhadze, E. M., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009). Effects of a low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619–634. http://dx.doi.org /10.1007/s10803-008-0662-7

Sokhadze, E. M., El-Baz, A. S., Sears, L. L., Opris, I., & Casanova, M. F. (2014). rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Frontiers in System Neurosciences, 8, 134. http://dx.doi.org/10.3389 /fnsys.2014.00134

Sokhadze, E. M., El-Baz, A. S., Tasman, A., Sears, L. L., Wang, Y., Lamina, E. V., & Casanova, M. F. (2014). Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: An exploratory study. Applied Psychophysiology and Biofeedback, 39(3–4), 237–257. http://dx.doi.org/10.1007/s10484-014-9264-7

Sokhadze, E., Stewart, C. M., Tasman, A., Daniels, R., & Trudeau, D. (2011). Review of rationale for neurofeedback application in adolescent substance abusers with comorbid disruptive behavioral disorders. Journal of Neurotherapy, 15(3), 232–261. http://dx.doi.org/10.1080 /10874208.2011.595298

Sokhadze, E. M., Tasman, A., Sokhadze, G. E., El-Baz, A. S., & Casanova, M. F. (2016). Behavioral, cognitive, and motor preparation deficits in a visual cued spatial attention task in autism spectrum disorder. Applied Psychophysiology and Biofeedback, 41(1), 81–92. http://dx.doi.org/10.1007/s10484-015-9313-x

Stanford, M. S., Vasterling, J. J., Mathias, C. W., Constans, J. I., & Houston, R. J. (2001). Impact of threat relevance on P3 event-related potentials in combat-related post-traumatic stress disorder. Psychiatry Research, 102(2), 125–137. http://dx.doi.org/10.1016/S0165-1781(01)00236-0

Taylor, S. F., Stern, E. R., & Gehring, W. J. (2007). Neural systems for error monitoring: Recent findings and theoretical perspectives. The Neuroscientist, 13(2), 160–172. http://dx.doi.org/10.1177/1073858406298184

Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T.-P., Pierce, K., & Courchesne, E. (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Cognitive Brain Research, 11(1), 127–145. http://dx.doi.org/10.1016/S0926-6410(00)00072-0

Turetsky, B. I., Colbath, E. A., & Gur, R. E. (1998a). P300 subcomponent abnormalities in schizophrenia: I. Physiological evidence for gender and subtype specific differences in regional pathology. Biological Psychiatry, 43(2), 84–96. http://dx.doi.org/10.1016/S0006-3223(97)00258-8

Turetsky, B., Colbath, E. A., & Gur, R. E. (1998b). P300 subcomponent abnormalities in schizophrenia: Longitudinal stability and relationship to symptom change. Biological Psychiatry, 43(1), 31–39. http://dx.doi.org/10.1016/S0006-3223(97)00261-8

van der Stelt, O., van der Molen, M., Gunning, W. B., & Kok, A. (2001). Neuroelectrical signs of selective attention to color in boys with attention-deficit hyperactivity disorder. Cognitive Brain Research, 12(2), 245–264. http://dx.doi.org/10.1016 /S0926-6410(01)00055-6

van Veen, V., & Carter, C. S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14(4), 593–602. http://dx.doi.org /10.1162/08989290260045837

Verbaten, M. N., Roelofs, J. W., van Engeland, H., Kenemans, J. K., & Slangen, J. L. (1991). Abnormal visual event-related potentials of autistic children. Journal of Autism and Developmental Disorders, 21(4), 449–470. http://dx.doi.org /10.1007/BF02206870

Vohs, J. L., Hetrick, W. P., Kieffaber, P. D., Bodkins, M., Bismark, A., Shekhar, A., & O’Donnell, B. F. (2008). Visual event-related potentials in schizotypal personality disorder and schizophrenia. Journal of Abnormal Psychology, 117(1), 119–131. http://dx.doi.org/10.1037/0021-843X.117.1.119

Weinstein, A. V. (1995). Visual ERPs evidence of enhanced processing of threatening information in anxious university students. Biological Psychiatry, 37(12), 847–858. http://dx.doi.org/10.1016/0006-3223(94)00249-3

Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S., & Bullmore, E. (2005). Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biological Psychiatry, 57(9), 991–998. http://dx.doi.org/10.1016/j.biopsych.2005.01.028

West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41(8), 1122–1135. http://dx.doi.org /10.1016/S0028-3932(02)00297-X

West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41(5), 739–748. http://dx.doi.org/10.1111 /j.1469-8986.2004.00205.x

Yamazaki, T., Kamijo, K.-I., Kenmochi, A., Fukuzumi, S.-I., Kiyuna, T., Takaki, Y., & Kuroiwa, Y. (2000). Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topography, 12(3), 159–175. http://dx.doi.org/10.1023/A:1023467806268

Downloads

Published

2017-03-14

Issue

Section

Invited Special Series: Essential Definitions