Combined Neurofeedback and Heart Rate Variability Training for Individuals with Symptoms of Anxiety and Depression: A Retrospective Study
DOI:
https://doi.org/10.15540/nr.4.1.37Keywords:
Anxiety, Depression, Neurofeedback, Neurocore, Heart Rate Variability, EEGAbstract
Introduction. Neurofeedback (NFB) and heart rate variability (HRV) training present promising, nonpharmaceutical intervention strategies for anxiety and depression. This report is the first to address whether concurrent NFB and HRV (NFB+HRV) provides a viable intervention for symptoms of anxiety and depression, measured by the Achenbach System of Empirically Based Assessment (ASEBA) questionnaire. Methods. 183 children and adults with symptoms of anxiety and/or depression underwent NFB+HRV training. Psychological symptom rating, EEG, blood pressure, breathing pattern, and HRV were measured before and after treatment. Results. After NFB+HRV training, symptoms of anxiety (p < .001, dz = 1.42) and depression (p < .001, dz = 1.34) were reduced in children and adults. The majority of individuals with pretreatment symptoms of anxiety (82.8%) or depression (81.1%) experienced ASEBA improvements of clinical importance. There were also significant changes in EEG, breathing rate, and HRV. For the 16 individuals copresenting with hypertension, systolic and diastolic blood pressure were significantly reduced. Conclusion. We present evidence that NFB+HRV training may provide an effective, nonpharmaceutical intervention to reduce symptoms of anxiety and depression in children and adults. Additionally, NFB+HRV training may improve EEG, blood pressure, resting breathing rate, and HRV.
References
Abejuela, H. R., & Osser, D. N. (2016). The Psychopharmacology Algorithm Project at the Harvard South Shore Program: An Algorithm for Generalized Anxiety Disorder. Harvard Review of Psychiatry, 24(4), 243–256. http://dx.doi.org/10.1097 /HRP.0000000000000098
Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA School-Age Forms and Profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.
Achenbach, T. M., & Rescorla, L. A. (2003). Manual for the ASEBA Adult Forms and Profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.
Andrews, G., Issakidis, C., Sanderson, K., Corry, J., & Lapsley, H. (2004). Utilising survey data to inform public policy: Comparison of the cost-effectiveness of treatment of ten mental disorders. The British Journal of Psychiatry, 184(6), 526–533. http://dx.doi.org/10.1192/bjp.184.6.526
Arns, M., Conners, C. K., & Kraemer, H. C. (2013). A Decade of EEG Theta/Beta Ratio Research in ADHD: A Meta-Analysis. Journal of Attention Disorders, 17(5), 374–383. http://dx.doi.org/10.1177/1087054712460087
Asselmann, E., & Beesdo-Baum, K. (2015). Predictors of the Course of Anxiety Disorders in Adolescents and Young Adults. Current Psychiatry Reports, 17, 7. http://dx.doi.org/10.1007/s11920-014-0543-z
Baehr, E., Rosenfeld, J. P., & Baehr, R. (2001). Clinical Use of an Alpha Asymmetry Neurofeedback Protocol in the Treatment of Mood Disorders. Journal of Neurotherapy, 4(4), 11–18. http://dx.doi.org/10.1300/J184v04n04_03
Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in Physiology, 4, 26. http://dx.doi.org/10.3389/fphys.2013.00026
Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders: A systematic review. Neuroscience & Biobehavioral Reviews, 33(3), 279–296. http://dx.doi.org/10.1016/j.neubiorev.2008.09.002
Carvalho, A. F., Sharma, M. S., Brunoni, A. R., Vieta, E., & Fava, G. A. (2016). The Safety, Tolerability and Risks Associated with the Use of Newer Generation Antidepressant Drugs: A Critical Review of the Literature. Psychotherapy and Psychosomatics, 85(5), 270–288. http://dx.doi.org/10.1159 /000447034
Cheon, E.-J., Koo, B.-H., & Choi, J.-H. (2016). The Efficacy of Neurofeedback in Patients with Major Depressive Disorder: An Open Labeled Prospective Study. Applied Psychophysiology and Biofeedback, 41(1), 103–110. http://dx.doi.org/10.1007/s10484-015-9315-8
Choi, S. W., Chi, S. E., Chung, S. Y., Kim, J. W., Ahn, C. Y., & Kim, H. T. (2011). Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology, 63(1), 43–51. http://dx.doi.org/10.1159 /000322290
Choobforoushzadeh, A., Neshat-Doost, H. T., Molavi, H., & Abedi, M. R. (2015). Effect of neurofeedback training on depression and fatigue in patients with multiple sclerosis. Applied Psychophysiology and Biofeedback, 40(1), 1–8. http://dx.doi.org/10.1007/s10484-014-9267-4
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
Cuijpers, P. (2015). Psychotherapies for adult depression. Current Opinion in Psychiatry, 28(1), 24–29. http://dx.doi.org/10.1097 /YCO.0000000000000121
Daniel, W. W. (1990). Applied Nonparametric Statistics (2nd ed.). Boston, MA: Brooks/Cole Cengage Learning.
Del Pozo, J. M., Gevirtz, R. N., Scher, B., & Guarneri, E. (2004). Biofeedback treatment increases heart rate variability in patients with known coronary artery disease. American Heart Journal, 147(3), 545. http://dx.doi.org/10.1016 /j.ahj.2003.08.013
Dreis, S. M., Gouger, A. M., Perez, E. G., Russo, G. M., Fitzsimmons, M. A., & Jones, M. S. (2015). Using Neurofeedback to Lower Anxiety Symptoms Using Individualized qEEG Protocols: A Pilot Study. NeuroRegulation, 2(3), 137–148. http://dx.doi.org /10.15540/nr.2.3.137
Everitt, B. S. (1992). The Analysis of Contingency Tables (2nd ed.). London, UK: Chapman & Hall.
Gamer, M., Lemon, J., Fellows, I., & Singh, P. (2012). irr: Various Coefficients of Interrater Reliability and Agreement (Version 0.84). Retrieved from https://cran.r-project.org/package=irr
Gevirtz, R. (2013). The Promise of Heart Rate Variability Biofeedback: Evidence-Based Applications. Biofeedback, 41(3), 110–120. http://dx.doi.org/10.5298/1081-5937-41.3.01
Ghaziri, J., Tucholka, A., Larue, V., Blanchette-Sylvestre, M., Reyburn, G., Gilbert, G., ... Beauregard, M. (2013). Neurofeedback training induces changes in white and gray matter. Clinical EEG and Neuroscience, 44(4), 265–272. http://dx.doi.org/10.1177/1550059413476031
Gibbons, C. R., Wiltsey Stirman, S., DeRubeis, R. J., Newman, C. F., & Beck, A. T. (2013). Research Setting Versus Clinic Setting: Which Produces Better Outcomes in Cognitive Therapy for Depression? Cognitive Therapy and Research, 37(3), 605–612. http://dx.doi.org/10.1007/s10608-012-9499-7
Goldfried, M. R., Newman, M. G., Castonguay, L. G., Fuertes, J. N., Magnavita, J. J., Sobell, L., & Wolf, A. W. (2014). On the Dissemination of Clinical Experiences in Using Empirically Supported Treatments. Behavior Therapy, 45(1), 3–6. http://dx.doi.org/10.1016/j.beth.2013.09.007
Hollon, S. D., Muñoz, R. F., Barlow, D. H., Beardslee, W. R., Bell, C. C., Bernal, G., ... Sommers, D. (2002). Psychosocial intervention development for the prevention and treatment of depression: Promoting innovation and increasing access. Biological Psychiatry, 52(6), 610–630. http://dx.doi.org /10.1016/S0006-3223(02)01384-7
Huang-Storms, L., Bodenhamer-Davis, E., Davis, R., & Dunn, J. (2006). QEEG-Guided Neurofeedback for Children with Histories of Abuse and Neglect: Neurodevelopmental Rationale and Pilot Study. Journal of Neurotherapy, 10(4), 3–16. http://dx.doi.org/10.1300/J184v10n04_02
Hunot, V., Churchill, R., Teixeira, V., & Silva de Lima, M. (2007). Psychological therapies for generalised anxiety disorder. Cochrane Database of Systematic Reviews, 1, CD001848. http://dx.doi.org/10.1002/14651858.CD001848.pub4
Kerson, C., Sherman, R. A., & Kozlowski, G. P. (2009). Alpha Suppression and Symmetry Training for Generalized Anxiety Symptoms. Journal of Neurotherapy, 13(3), 146–155. http://dx.doi.org/10.1080/10874200903107405
Kessler, R. C., Angermeyer, M., Anthony, J. C., De Graaf, R., Demyttenaere, K., Gasquet, I., ... Üstün, T. B. (2007). Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry, 6(3), 168–176.
Khan, A., & Brown, W. A. (2015). Antidepressants versus placebo in major depression: An overview. World Psychiatry, 14(3), 294–300. http://dx.doi.org/10.1002/wps.20241
Kirsch, I., Deacon, B. J., Huedo-Medina, T. B., Scoboria, A., Moore, T. J., & Johnson, B. T. (2008). Initial Severity and Antidepressant Benefits: A Meta-Analysis of Data Submitted to the Food and Drug Administration. PLoS Medicine, 5(2), e45. http://dx.doi.org/10.1371/journal.pmed.0050045
Lehrer, P. M. (2013). How Does Heart Rate Variability Biofeedback Work? Resonance, the Baroreflex, and Other Mechanisms. Biofeedback, 41(1), 26–31. http://dx.doi.org /10.5298/1081-5937-41.1.02
Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: How and why does it work? Frontiers in Psychology, 5, 756. http://dx.doi.org/10.3389 /fpsyg.2014.00756
Lehrer, P. M., Sasaki, Y., & Saito, Y. (1999). Zazen and cardiac variability. Psychosomatic Medicine, 61(6), 812–821. http://dx.doi.org/10.1097/00006842-199911000-00014
Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3)P, 177–191. http://dx.doi.org/10.1023 /a:1009554825745
Levita, L., Salas Duhne, P. G., Girling, C., & Waller, G. (2016). Facets of clinicians' anxiety and the delivery of cognitive behavioral therapy. Behaviour Research and Therapy, 77, 157–161. http://dx.doi.org/10.1016/j.brat.2015.12.015
Maxwell, A. E. (1970). Comparing the classification of subjects by two independent judges. The British Journal of Psychiatry, 116(535), 651–655. http://dx.doi.org/doi:10.1192 /bjp.116.535.651
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. http://dx.doi.org /10.1016/j.tics.2011.08.003
Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. http://dx.doi.org/10.1016/j.paid.2012.11.037
Pallant, J. (2007). SPSS Survival Manual: A Step by Step Guide to Data Analysis Using SPSS for Windows Version 15 (3rd ed.). Milton Keynes, UK: Open University Press.
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–143. http://dx.doi.org/10.1016 /j.biopsycho.2006.06.009
ProComp2 amplifier with BioGraph 5.1 software [Apparatus]. Montreal, Canada: Thought Technology Ltd.
ProComp5 amplifier with BioGraph 5.1 software [Apparatus]. Montreal, Canada: Thought Technology Ltd.
R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
Reid-Chung, A., Thompson, M., & Thompson, L. (2015). Heart Rate Variability and Traumatic Brain Injury (TBI): Clinical Applications. Biofeedback, 43(1), 27¬–30. http://dx.doi.org /10.5298/1081-5937-43.1.02
Richards, D. (2011). Prevalence and clinical course of depression: A review. Clinical Psychology Review, 31(7), 1117–1125. http://dx.doi.org/10.1016/j.cpr.2011.07.004
Royal College of Psychiatrists. (2013). Second Round of the National Audit of Psychological Therapies for Anxiety and Depression (NAPT) 2013. London, UK: Healthcare Quality Improvement Partnership.
Sadjadi, S. A., & Hashemian, P. (2014). Effectiveness of Neurofeedback Therapy in Children with Separation Anxiety Disorder. Journal of Psychiatry, 17, 10000149. http://dx.doi.org/10.4172/Psychiatry.1000149
Schneider, R. L., Arch, J. J., & Wolitzky-Taylor, K. B. (2015). The state of personalized treatment for anxiety disorders: A systematic review of treatment moderators. Clinical Psychology Review, 38, 39–54. http://dx.doi.org/10.1016 /j.cpr.2015.02.004
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart's anatomy and heart rate variability. Frontiers in Psychology, 5, 1040. http://dx.doi.org/10.3389/fpsyg.2014.01040
Simkin, D. R., Thatcher, R. W., & Lubar, J. (2014). Quantitative EEG and neurofeedback in children and adolescents: Anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury. Child & Adolescent Psychiatric Clinics, 23(3), 427–464. http://dx.doi.org/10.1016/j.chc.2014.03.001
Song, H.-S., & Lehrer, P. M. (2003). The effects of specific respiratory rates on heart rate and heart rate variability. Applied Psychophysiology and Biofeedback, 28(1)M, 13–23. http://dx.doi.org/10.1023/A:1022312815649
Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self-regulation, 21(1), 3–33. http://dx.doi.org/10.1007/BF02214147
Stuart, A. (1955). A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification. Biometrika, 42(3/4), 412–416. http://dx.doi.org/10.2307/2333387
Swingle, P. G. (2015). Adding neurotherapy to your practice: Clinician's guide to the ClinicalQ, neurofeedback, and braindriving. New York, NY: Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-15527-2
Szkodny, L. E., Newman, M. G., & Goldfried, M. R. (2014). Clinical Experiences in Conducting Empirically Supported Treatments for Generalized Anxiety Disorder. Behavior Therapy, 45(1), 7–20. http://dx.doi.org/10.1016 /j.beth.2013.09.009
The Task Force Report. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043–1065. http://doi.org/10.1161 /01.CIR.93.5.1043
Thompson, M., & Thompson, L. (2006). Improving Attention in Adults and Children: Differing Electroencephalography Profiles and Implications for Training. Biofeedback, 34(3), 99–105.
Vaschillo, E., Lehrer, P., Rishe, N., & Konstantinov, M. (2002). Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system. Applied Psychophysiology and Biofeedback, 27(1), 1–27. http://dx.doi.org/10.1023 /A:1014587304314
Vittengl, J. R., Clark, L. A., Dunn, T. W., & Jarrett, R. B. (2007). Reducing relapse and recurrence in unipolar depression: A comparative meta-analysis of cognitive-behavioral therapy's effects. Journal of Consulting and Clinical Psychology, 75(3), 475–488. http://dx.doi.org/10.1037/0022-006X.75.3.475
Walker, J. E. (2009). Anxiety Associated with Post Traumatic Stress Disorder—The Role of Quantitative Electro-encephalograph in Diagnosis and in Guiding Neurofeedback Training to Remediate the Anxiety. Biofeedback, 37(2), 67–70. http://dx.doi.org/10.5298/1081-5937-37.2.67
Walker, J. E. (2013). QEEG-Guided Neurofeedback for Anger/Anger Control Disorder. Journal of Neurotherapy, 17(1), 88–92. http://dx.doi.org/10.1080 /10874208.2012.705767
Walker, J. E., & Lawson, R. (2013). FP02 Beta Training for Drug-Resistant Depression—A New Protocol That Usually Reduces Depression and Keeps It Reduced. Journal of Neurotherapy, 17(3), 198–200. http://dx.doi.org/10.1080 /10874208.2013.785784
Waller, G. (2009). Evidence-based treatment and therapist drift. Behaviour Research and Therapy, 47(2), 119–127. http://dx.doi.org/10.1016/j.brat.2008.10.018
Weimer, K., Colloca, L., & Enck, P. (2015). Placebo effects in psychiatry: Mediators and moderators. The Lancet Psychiatry, 2(3), 246–257. http://dx.doi.org/10.1016/S2215-0366(14)00092-3
Westra, H. A. (2011). Comparing the predictive capacity of observed in-session resistance to self-reported motivation in cognitive behavioral therapy. Behaviour Research and Therapy, 49(2), 106–113. http://dx.doi.org/10.1016 /j.brat.2010.11.007
Williams, D. P., Cash, C., Rankin, C., Bernardi, A., Koenig, J., & Thayer, J. F. (2015). Resting heart rate variability predicts self-reported difficulties in emotion regulation: A focus on different facets of emotion regulation. Frontiers in Psychology, 6, 261. http://dx.doi.org/10.3389/fpsyg.2015.00261
Winkelmann, T., Thayer, J. F., Pohlack, S., Nees, F., Grimm, O., & Flor, H. (2016). Structural brain correlates of heart rate variability in a healthy young adult population. Brain Structure and Function, 222(2), 1061–1068. http://dx.doi.org/10.1007 /s00429-016-1185-1
Yasuma, F., & Hayano, J.-I. (2004). Respiratory Sinus Arrhythmia: Why Does the Heartbeat Synchronize with Respirator Rhythm? Chest, 125(2), 683–690. http://dx.doi.org /10.1378/chest.125.2.683
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).