TMS-based neuromodulation of evoked and induced gamma oscillations and event-related potentials in children with autism
DOI:
https://doi.org/10.15540/nr.3.3.101Keywords:
Autism, evoked and induced gamma oscillations, event-related potential, rTMS, behaviorAbstract
Gamma oscillations are important for the integration of information and are involved in a variety of perceptual, cognitive, and motor process that are affected in autism spectrum disorder (ASD). We used gamma oscillations along with event-related potentials (ERP) as functional markers of response to repetitive transcranial magnetic stimulation (rTMS). The subjects were age- and gender-matched ASD and typically developing children (TDC). Behavioral evaluations along with evoked and induced gamma and ERPs during oddball task were collected at pre-and post-TMS in ASD group (N=23) and at baseline in TDC (N=21). ASD subjects were assigned to 18 sessions of rTMS over the dorsolateral prefrontal cortex. Baseline test showed significant differences between ASD and TDC groups in terms of responses to non-targets where ASD showed excessive gamma oscillations and larger ERPs as compared to the TDC group. Behavioral response differences were manifested in a lower accuracy of motor responses. The rTMS resulted in improved accuracy of response, attenuated evoked gamma responses to non-targets, and increased induced gamma to targets. Behavioral outcomes showed decreased irritability and hyperactivity scores and decreased repetitive and stereotype behaviors. There is discussed utility of gamma oscillations as biomarkers for functional diagnostics and predictions of TMS outcomes in ASD.References
Aman, M. G. (2004).Management of hyperactivity and other acting-out problems in patients with autism spectrum disorder. Seminars in Pediatric Neurology.11(3), 225–228. http://dx.doi.org/10.1016/j.spen.2004.07.006
Aman, M. G., & Singh, N. N. (1994).Aberrant Behavior Checklist—Community. Supplementary Manual. East Aurora, NY: Slosson Educational Publications.
American Psychiatric Association.(2000). Diagnostic and Statistical Manual of Mental Disorders (4thed., text rev.).Washington, DC: Author.
Baron-Cohen, S., & Belmonte, M. K. (2005).Autism: a window onto the development of the social and the analytic brain. Annual Review of Neuroscience,28, 109¬–126. http://dx.doi.org/10.1146/annurev.neuro.27.070203.144137
Baruth, J. M., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., Sears, L., &Sokhadze, E. (2010). Low-frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorders. Journal of Neurotherapy, 14(3), 179–194. http://dx.doi.org/10.1080/10874208.2010.501500
Baruth, J. M., Casanova, M. F., Sears, L., &Sokhadze, E. (2010). Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Translational Neuroscience, 1(2), 177–187. http://dx.doi.org/10.2478/v10134-010-0024-9
Baruth, J., Williams, E., Sokhadze, E., El-Baz, A., Sears, L., & Casanova, M.F. (2011). Repetitive transcranial stimulation (rTMS) improves electroencephalographic and behavioral outcome measures in autism spectrum disorders (ASD). Autism Science Digest, 1(1), 52–57.
Başar, E. (1980). EEG brain dynamics: Relation between EEG and brain evoked potentials. Amsterdam: Elsevier.
Başar, E., Schürmann, M., Başar-Eroglu, C., &Demiralp, T. (2001).Selectively distributed gamma band system in brain. International Journal of Psychophysiology, 39(2–3), 129–135.
Belmonte, M. K., &Yurgelun-Todd, D. A. (2003a). Anatomic dissociation of selective and suppressive processes in visual attention.NeuroImage, 19(1), 180–189. http://dx.doi.org/10.1016/S1053-8119(03)00033-8
Belmonte, M.K., &Yurgelun-Todd, D.A. (2003b).Functional anatomy of impaired selective attention and compensatory processing in autism.Cognitive Brain Research,17(3), 651–664. http://dx.doi.org/10.1016/S0926-6410(03)00189-7
Belmonte, M.K., Allen, G., Beckel-Mitchener, A., Boulanger, L.M., Carper, R.A., & Webb, S.J. (2004) Autism and abnormal development of brain connectivity. Journal of Neuroscience, 24(42), 9228–9231. http://dx.doi.org/10.1523/JNEUROSCI.3340-04.2004
Bertrand, O., &Tallon-Baudry, C. (2000). Oscillatory gamma activity in humans: A possible role for object representation. International Journal of Psychophysiology,38(3), 211–223. http://dx.doi.org/10.1016/S0167-8760(00)00166-5
Bodfish, J. W., Symons, F. J., & Lewis, M. H. (1999). Repetitive behavior scales. Morgantown, NC: Western Carolina Center Research Reports.
Bodfish, J. W., Symons, F. J., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autismand Developmental Disorders,30(3), 237–243.
Bogte, H., Flamma, B., van der Meere, J., & van Engeland, H. (2007). Post-error adaptation in adults with high functioning autism.Neuropsychologia,45(8), 1707–1714. http://dx.doi.org/10.1016/j.neuropsychologia.2006.12.020
Bomba, M.D., & Pang, E.W. (2004) Cortical auditory evoked potentials in autism: A review. International Journal of Psychophysiology,53(3), 161–169. http://dx.doi.org/10.1016 /j.ijpsycho.2004.04.001
Böttger, D., Herrmann, C. S., &von Cramon, D. Y. (2002). Amplitude differences of evoked alpha and gamma oscillations in two different age groups.International Journal of Psychophysiology,45(3), 245–251. http://dx.doi.org/10.1016/S0167-8760(02)00031-4
Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002).The temporal binding deficit hypothesis of autism.Developmentand Psychopathology,14(2), 209–224. http://dx.doi.org/10.1017/S0954579402002018
Brown, C. (2005). EEG in autism: Is there just too much going on in there? In M. F. Casanova (Ed.), Recent developments in autism research (pp. 109–126). New York: Nova Science Publishers.
Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005).Gamma abnormalities during perception of illusory figures in autism.Cortex,41(3), 364–376.
Bruneau, N., Roux, S., Adrien, J.L., &Barthélémy, C. (1999) Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N1 wave¬–T Complex). Clinical Neurophysiology,110(11), 1927–1934. http://dx.doi.org/10.1016/S1388-2457(99)00149-2
Burle, C., Possamaï, C.-A., Vidal, F., Bonnet, M., &Hasbroucq, T. (2002). Executive control in the Simon effect: An electromyographic and distributional analysis. Psychological Research, 66(4), 324–336. http://dx.doi.org/10.1007/s00426-002-0105-6
Cantor, D.S., Thatcher, R.W., Hrybyk, M., & Kaye, H. (1986).Computerized EEG analysis of autistic children.Journal of Autism and Developmental Disorders, 16(2), 169–187. http://dx.doi.org/10.1007/BF01531728
Casanova, M. F., Baruth, J., El-Baz, A. S., Sokhadze, G. E., Hensley, M., & Sokhadze, E. M. (2013). Evoked and induced gamma-frequency oscillation in autism. In M. F. Casanova, A. S. El-Baz, and J. S. Suri (Eds.), Imaging the Brain in Autism (pp. 87–106). New York: Springer. http://dx.doi.org/10.1007/978-1-4614-6843-1
Casanova, M. F., Baruth, J. M., El-Baz, A., Tasman, A., Sears, L., &Sokhadze, E. (2012). Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Translational Neuroscience, 3(2), 170–180. http://dx.doi.org/10.2478/s13380-012-0022-0
Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002c). Clinical and macroscopic correlates of minicolumnar pathology in autism.Journal of Child Neurology, 17(9), 692–695. http://dx.doi.org/10.1177/088307380201700908
Casanova, M.F., Buxhoeveden, D., &Gomez, J. (2003). Disruption in the inhibitory architecture of the cell minicolumn: Implications for autism. The Neuroscientist, 9(6), 496–507. http://dx.doi.org/10.1177/1073858403253552
Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002a). Minicolumnar pathology in autism. Neurology, 58(3), 428–432. http://dx.doi.org/10.1212/WNL.58.3.428
Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002b).Neuronal density and architecture (gray level index) in the brains of autistic patients. Journal of Child Neurology,17(7), 515–521. http://dx.doi.org/10.1177/088307380201700708
Casanova, M.F., &Sokhadze, E.M.(2014). Transcranial magnetic stimulation: Application in autism treatment. In V.W. Hu (Ed.), Frontiers in autism research: New horizons for diagnosis and treatment (pp. 583–606). Hackensack, NJ: World Scientific Publishing Co.
Casanova, M.F., Sokhadze, E., Opris, I., Wang, Y., & Li, X.(2015). Autism spectrum disorders: Linking neuropathological findings to treatment with transcranial magnetic stimulation. ActaPaediatrica, 104(4), 346–355. http://dx.doi.org/10.1111/apa.12943
Casanova, M. F., van Kooten, I. A. J., Switala, A.E., van Engeland, H., Heinsen, H., Steinbusch, H. W. M., ... Schmitz, C. (2006). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Research, 6(3–4), 127–133. http://dx.doi.org/10.1016/j.cnr.2006.06.003
Ciesielski, K.T., Courchesne, E., &Elmasian, R. (1990). Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals.Electroencephalography and Clinical Neurophysiology, 75(3), 207–220.
Clark, V.P., Fan, S., &Hillyard, S.A. (1995). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human Brain Mapping, 2(3), 170–187. http://dx.doi.org/10.1002/hbm.460020306
Coben, R., Chabot, R. J., & Hirshberg, L. (2013). EEG analyses in the assessment of autistic disorders. In M. F. Casanova, A. S. El-Baz, and J. S. Suri(Eds.),Imaging the Brain in Autism(pp. 349–370). New York: Springer. http://dx.doi.org/10.1007/978-1-4614-6843-1_12
Coben, R., Clarke, A. R., Hudspeth, W., & Barry, R. J. (2008).EEG power and coherence in autistic spectrum disorder.Clinical Neurophysiology, 119(5), 1002–1009. http://dx.doi.org/10.1016/j.clinph.2008.01.013
Coles, M.G.H., &Rugg, M.D. (1995). Event-related brain potentials: An introduction. In M.D. Rugg& M.G.H. Coles, (Eds.), Electrophysiology of mind: Event-related brain potentials and cognition(pp. 40–85).Oxford: Oxford University Press.
Cornew, L., Roberts, T. P. L., Blaskey, L., & Edgar, J. C. (2012).Resting-state oscillatory activity in autism spectrum disorders.Journal of Autism and Developmental Disorders, 42(9), 1884–1894. http://dx.doi.org/10.1007/s10803-011-1431-6
Courchesne, E., Lincoln, A.J., Yeung-Courchesne, R., Elmasian, R. &Grillon, C. (1989).Pathophysiologic findings in nonretarded autism and receptive developmental language disorder.Journal of Autism and Developmental Disorders,19(1), 1–17.http://dx.doi.org/10.1007/BF02212714
Courchesne, E., & Pierce, K. (2005) Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology. 15(2), 225–230. http://dx.doi.org/10.1016 /j.conb.2005.03.001
Croarkin, P. E., Wall, C. A., & Lee, J. (2011).Applications of transcranial magnetic stimulation (TMS) in child and adolescent psychiatry.International Review of Psychiatry, 23(5), 445–453. http://dx.doi.org/10.3109/09540261.2011.623688
C2 multichannel physiological monitoring device [Apparatus]. Poulsbo, WA: J&J Engineering, Inc.
Daskalakis, Z. J., Christensen, B. K., Fitzgerald, P. B., & Chen, R. (2002). Transcranial magnetic stimulation: A new investigational and treatment tool in psychiatry. The Journal of Neuropsychiatry andClinical Neurosciences, 14(4), 406–415. http://dx.doi.org/10.1176/jnp.14.4.406
Desmedt, J. E., & Tomberg, C. (1990). Topographic analysis in brain mapping can be compromised by the average reference. Brain Topography, 3(1), 35–42. http://dx.doi.org/10.1007/BF01128859
Desmedt, J. E., Tomberg, C., Noël, P., & Ozaki, I. (1990). Beware of the average reference in brain mapping. Electroencephalography and Clinical Neurophysiology, Suppl.41, 22–27.
Donner, T. H., & Siegel, M. (2011).A framework for local cortical oscillation patterns.Trends in Cognitive Sciences, 15(5), 191–199. http://dx.doi.org/10.1016/j.tics.2011.03.007
EGI system [Apparatus]. Eugene, OR: Electrical Geodesics, Inc.
Engel, A. K.,& Singer, W. (2001).Temporal binding and the neural correlates of sensory awareness.Trends in Cognitive Sciences, 5(1), 16–25. http://dx.doi.org/10.1016/S1364-6613(00)01568-0
E-Prime (Version 1.0) [Computer software]. Sharpsburg, PA: Psychology Software Tools, Inc.
Fell, J., Klaver, P., Lehnertx, K., Grunwald, T., Schaller, C., Elger, C. E., & Fernández, G. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4(12), 1259–1264. http://dx.doi.org/10.1038/nn759
Fernández, G., Fell, J., & Fries, P. (2002). Response: The birth of a memory. Trends in Neurosciences,25(6), 281–282. http://dx.doi.org/10.1016/S0166-2236(02)02177-X
Fitzgerald, P. B., Hoy, K., Gunewardene, R., Slack, C., Ibrahim, S., Bailey, M., & Daskalakis, Z. J. (2011). A randomized trial of unilateral and bilateral prefrontal cortex transcranial magnetic stimulation in treatment-resistant major depression. Psychological Medicine, 41(6), 1187–1196. http://dx.doi.org/10.1017/S0033291710001923
Fletcher, E. M., Kussmaul, C. L., &Mangun, G. R. (1996).Estimation of interpolation errors in scalp topographic mapping.Electroencephalography and Clinical Neurophysiology, 98(5), 422–434. http://dx.doi.org/10.1016/0013-4694(96)95135-4
Ford, J. M., Gray, M., Faustman, W. O., Heinks, T. H., &Mathalon, D. H. (2005). Reduced gamma-band coherence to distorted feedback during speech when what you say is not what you hear. International Journal of Psychophysiology, 57(2), 143–150. http://dx.doi.org/10.1016/j.ijpsycho.2005.03.002
Friedman, D., Simpson, G.V., &Hamberger, M. (1993). Age-related changes in scalp topography to novel and target stimuli. Psychophysiology, 30, 383–396.
Fries, P. (2009).Neuronal gamma-band synchronization as a fundamental process in cortical computation.Annual Review of Neuroscience, 32, 209–224. http://dx.doi.org/10.1146/annurev.neuro.051508.135603
Frith, U., & Happé, F. (1994). Autism: Beyond theory of mind. Cognition, 50(1–3), 115–132.http://dx.doi.org/10.1016/0010-0277(94)90024-8
García-Larrea, L., Lukaszewicz, A. C., &Mauguière, F. (1992).Revisiting the oddball paradigm.Non-target vs neutral stimuli and the evaluation of ERP attentional effects.Neuropsychologia, 30(8), 723–741.
Garvey, M. A., & Gilbert, D. L. (2004).Transcranial magnetic stimulation in children.European Journal of Paediatric Neurology, 8(1), 7–19. http://dx.doi.org/10.1016/j.ejpn.2003.11.002
George, M. S., &Belmaker, R. H. (Eds.). (2007).Transcranial magnetic stimulation in clinical psychiatry. Arlington, VA: American Psychiatry Publishing, Inc.
George, M. S., Lisanby, S. H., Avery, D., McDonald, W. M., Durkalski, V., Pavlicova, M., …Sackeim, H. A. (2010). Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: A sham-controlled randomized trial. Archives of General Psychiatry, 67(5), 507–516. http://dx.doi.org/10.1001/archgenpsychiatry.2010.46
Gershon, A. A., Dannon, P. N., &Grunhaus, L. (2003).Transcranial magnetic stimulation in the treatment of depression.The American Journal of Psychiatry, 160(5), 835–841. http://dx.doi.org/0.1176/appi.ajp.160.5.835
Gevins, A., Smith, M. E., McEvoy, L. K., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374–385. http://dx.doi.org/10.1093/cercor/7.4.374
Gillberg, C., &Billstedt, E. (2000). Autism and Asperger syndrome: coexistence with other clinical disorders. ActaPsychiatricaScandinavica, 102(5), 321–330. http://dx.doi.org/10.1034/j.1600-0447.2000.102005321.x
Gomez-Gonzales, C. M., Clark, V. P., Fan, S., Luck, S. J., &Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials.Brain Topography, 7(1), 41–51.
Goto, Y., Brigell, M.G., &Parmeggiani, L. (1996). Dipole-modeling of the visual evoked P300. Journal of Psychosomatic Research, 41(1), 71–79. http://dx.doi.org/10.1016/0022-3999(96)00062-1
Gray, C. M., König, P., Engel, A. K., &Singer,W. (1989). Oscillatory response in the cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338(6213), 334–337. http://dx.doi.org/10.1038/338334a0
Grice, S. J., Spratling, M. W., Karmiloff-Smith, A., Halit, H., Csibra, G., de Haan, M., & Johnson, M. H. (2001). Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. NeuroReport, 12(12), 2697–2700. http://dx.doi.org/10.1097/00001756-200108280-00021
Gross, E., El-Baz, A. S., Sokhadze, G. E., Sears, L., Casanova, M. F., &Sokhadze, E. M. (2012). Induced EEG gamma oscillation alignment improves differentiation between autism and ADHD group responses in a facial categorization task. Journal of Neurotherapy, 16(2), 78–91. http://dx.doi.org/10.1080/10874208.2012.677631
Grosse-Wentrup,M., Schölkopf, B., & Hill, J. (2011). Casual influence of gamma oscillations on the sensorimotor rhythm.NeuroImage, 56(2), 837–842. http://dx.doi.org/10.1016/j.neuiroimage.2010.04.265
Halgren, E., Marinkovic, K., &Chauvel, P. (1998).Generators of the late cognitive potentials in auditory and visual oddball tasks.Electroencephalography and Clinical Neurophysiology, 106(2), 156–164. http://dx.doi.org/10.1016/S0013-4694(97)00119-3
Happé, F., &Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25. http://dx.doi.org/10.1007/s10803-005-0039-0
Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., …Hillyard, S. A. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans.Nature, 372(6506), 543–546. http://dx.doi.org/10.1038/372543a0
Henderson, H., Schwartz, C., Mundy, P., Burnette, C.,Sutton, S., Zahka, N., &Pradella, A. (2006). Response monitoring, the error-related negativity, and differences in social behavior in autism.Brain and Cognition, 61(1), 96–109. http://dx.doi.org/10.1016/j.bandc.2005.12.009
Hensley, M. K., El-Baz, A. S., Sokhadze, E. M., Sears, L., & Casanova, M. F. (2014).Effects of 18 session TMS therapy of gamma coherence in autism.Psychophysiology, 51, S16.
Herrmann, C. S., &Demiralp, T. (2005).Human EEG gamma oscillations in neuropsychiatric disorders.Clinical Neurophysiology, 116(12), 2719–2733. http://dx.doi.org/10.1016/j.clinph.2005.07.007
Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations. Neuroscience and Biobehavioral Reviews, 25(6), 465–476. http://dx.doi.org/10.1016/S0149-7634(01)00027-6
Herrmann, C. S., &Mecklinger, A. (2000). Magnetoencephalographic responses to illusory figures: Early evoked gamma is affected by processing of stimulus features. International Journal of Psychophysiology, 38(3), 265–281. http://dx.doi.org/10.1016/S0167-8760(00)00170-7
Herrmann, C. S., &Mecklinger, A. (2001). Gamma activity in human EEG is related to high-speed memory comparisons during object selective attention. Visual Cognition, 8(3–5), 593–608. http://dx.doi.org/10.1080/13506280143000142
Herrmann, C. S., Munk, M. H. J., & Engel, A. K. (2004). Cognitive functions of gamma-band activity: Memory match and utilization. Trends in Cognitive Sciences, 8(8), 347–355. http://dx.doi.org/10.1016/j.tics.2004.06.006
Hillyard, S. A., &Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences of the USA, 95(3), 781–787.
Hoffman, R. E., &Cavus, I. (2002).Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. The American Journal of Psychiatry, 159(7), 1093–1102. http://dx.doi.org/10.1176/appi.ajp.159.7.1093
Horrell, T., El-Baz, A., Baruth, J., Tasman, A., Sokhadze, G., Stewart, C., &Sokhadze, E. (2010). Neurofeedback effects on evoked and induced EEG gamma band reactivity to drug -related cues in cocaine addiction. Journal of Neurotherapy,14(3), 195–216. http://dx.doi.org/10.1080/10874208.2010.501498
Industrial Acoustics Co. camera [Apparatus]. Bronx, NY: IAC Acoustics.
Isler, J. R., Martien, K. M., Grieve, P. G., Stark, R. I., & Herbert, M. R. (2010). Reduced functional connectivity in visual evoked potentials in children with autism spectrum disorder.Clinical Neurophysiology, 121(12), 2035–2043. http://dx.doi.org/10.1016/j.clinph.2010.05.004
Joliot, M., Ribary, M., & Llinás, R. (1994). Human oscillatory brain activity near 40 Hz coexists with temporal cognitive binding. Proceedings of the National Academy of Sciences of the USA, 91(24), 11748–11751.
Just, M.A., Cherkassky, V.L., Keller, T.A., & Minshew, N.J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127(8), 1811–1821. http://dx.doi.org/10.1093/brain/awh199
Kahana, M. J. (2006). The cognitive correlates of human brain oscillations.The Journal of Neuroscience, 26(6), 1669–1672.http://dx.doi.org/10.1523/JNEUROSCI.3737-05c.2006
Kaiser, J., &Lutzenberger, W. (2003). Induced gamma-band activity and human brain function. The Neuroscientist, 9(6), 475-484. http://dx.doi.org/10.1177/1073858403259137
Kanizsa, G. (1976). Subjective contours. Scientific American, 235, 48–52.
Karakaş, S., &Başar, E. (1998). Early gamma response is sensory in origin: A conclusion based on cross-comparison of results from multiple experimental paradigms. International Journal of Psychophysiology, 31(1), 13–31.http://dx.doi.org/10.1016/S0167-8760(98)00030-0
Karakaş, S., Başar-Eroğlu, C., Özesmi, C., Kafadar, H., & Erzengin, Ö. Ü. (2001). Gamma response of the brain: a multifunctional oscillation that represents bottom-up with top-down processing. International Journal of Psychophysiology, 39, 137–150. http://dx.doi.org/10.1016/S0167-8760(00)00137-9
Karakaş, S., Erzengin, Ö.U.,&Başar, E. (2000). The genesis of human event-related responses explained through the theory of oscillatory neural assemblies. Neuroscience Letters, 285(1), 45–48. http://dx.doi.org/10.1016/S0304-3940(00)01022-3
Karakaş, S., Tüfekçic,I., Bekçi, B., Çakmak,E., Doğutepe, E., Erzengin, Ö. U., …Arkan, O. (2006). Early time-locked gamma response and gender specificity.International Journal of Psychophysiology,60(3), 225–239. http://dx.doi.org/10.1016/j.ijpsycho.2005.05.009
Katayama, J., &Polich, J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35(1), 23–33. http://dx.doi.org/10.1111/1469-8986.3510023
Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999).Human gamma band activity and perception of a Gestalt.TheJournal of Neuroscience, 19(16), 7152–7161.
Kéïta, L., Mottron, L., Dawson, M., & Bertone, A. (2011). Atypical lateral connectivity: A neural basis for altered visuospatial processing in autism. Biological Psychiatry, 70(9), 806–811. http://dx.doi.org/10.1016/j.biopsych.2011.07.031
Kemner, C., van der Gaag, R. J., Verbaten, M., & van Engeland, H. (1999). ERP differences among subtypes of pervasive developmental disorders. Biological Psychiatry,46(6), 781–789.
Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., &van Engeland, H. (1994). Visual and somatosensory event-related brain potentials in autistic children and three different control groups. Electroencephalography and Clinical Neurophysiology, 92(3), 225–237.
Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., &van Engeland, H. (1995). Auditory event-related potentials in autistic children and three different control groups. Biological Psychiatry, 38, 150–165. http://dx.doi.org/10.1016/0006-3223(94)00247-Z
Kenemans, J.L., Kok, A., & Smulders, F. T. (1993). Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements. Electroencephalography and Clinical Neurophysiology, 88(1), 51–63.http://dx.doi.org/10.1016 /0168-5597(93)90028-N
Khedr, E. M., Rothwell, J. C., Ahmed, M. A., & El-Atar, A. (2008). Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: Comparison of different stimulus frequencies. Journal of Neurology, Neurosurgery, and Psychiatry,79(2), 212–215. http://dx.doi.org/10.1136 /jnnp.2007.127712
Knight, R. T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography and Clinical Neurophysiology, 59(1), 9–20. http://dx.doi.org /10.1016/0168-5597(84)90016-9
Knight, R. T. (1997).Distributed cortical network for visual attention.Journal of Cognitive Neuroscience,9, 75–91.http://dx.doi.org/10.1162/jocn.1997.9.1.75
Lavdas, A. A., Grigoriou, M., Pachnis, V., & Parnavelas, J. G. (1999). The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. Journal of Neuroscience, 19(18), 7881–7888.
Le Couteur, A., Lord, C., & Rutter, M. (2003).The autism diagnostic interview—revised (ADI-R). Los Angeles, CA: Western Psychological Services.
Lenz, D., Schadow, J., Thaerig, S., Busch, N. A., &Herrmann, C. S. (2007). What's that sound? Matches with auditory long-term memory induce gamma activity in human EEG. International Journal of Psychophysiology, 64(1), 31–38.http://dx.doi.org/10.1016/j.ijpsycho.2006.07.008
Lin, K. L., &Pascual-Leone, A. (2002).Transcranial magnetic stimulation and its applications in children.Chang Gung Medical Journal, 25(7), 424–436.
Llinás, R., &Ribary, U. (1993).Coherent 40-Hz oscillation characterizes dream state in humans. Proceedings of the National Academy of Sciences of the USA, 90(5), 2078–2081.http://dx.doi.org/10.1073/pnas.90.5.2078
Loo, C. K., & Mitchell, P. B. (2005).A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy.Journal of Affective Disorders, 88(3), 255–267. http://dx.doi.org/10.1016/j.jad.2005.08.001
Luck, S. J., Heinze, H. J., Mangun, G. R., &Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. ii. Functional dissociation of P1 and N1 components. Electroencephalography and Clinical Neurophysiology,75(6), 528–542.http://dx.doi.org/10.1016 /0013-4694(90)90139-B
Luu, P., Tucker, D. M., Englander, R., Lockfeld, A., Lutsep, H., & Oken, B. (2001). Localizing acute stroke-related EEG changes: Assessing the effects of spatial undersampling. Journal of Clinical Neurophysiology, 18(4), 302–317.
Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend, J., Courchesne, E., &Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science, 295(5555), 690–694. http://dx.doi.org/10.1126/science.1066168
Mann, E. O., & Paulsen, O. (2007).Role of GABAergic inhibition in hippocampal network oscillations.Trends in Neurosciences, 30(7), 343–349. http://dx.doi.org/10.1016 /j.tins.2007.05.003
Mecklinger, A., Maess, B., Opitz, B., Pfeifer, E., Cheyne, D., & Weinberg, H. (1998).AMEG analysis of the P300 in visual discrimination tasks.Electroencephalography and Clinical Neurophysiology,108(1), 45–66.
Milne, E., Scope, A., Pascalis, O., Buckley, D., &Makeig, S. (2009). Independent component analysis reveals atypical electroencephalographic activity during visual perception in individuals with autism.Biological Psychiatry, 65(1), 22–30. http://dx.doi.org/10.1016/j.biopsych.2008.07.017
Minshew, N.J., Goldstein, G., & Siegel, D.J. (1997) Neuropsychologic functioning in autism: Profile of a complex information processing disorder. Journal of International Neuropsychology Society, 3(4), 303–316.
Minshew, N. J. & Williams, D. L. (2007). The New Neurobiology of Autism: Cortex, Connectivity, and Neuronal Organization. Archives of Neurology, 64(7), 945–950.http://dx.doi.org /10.1001/archneur.64.7.945
Müller, M. M., Bosch, J., Elbert, T., Kreiter, A., Sosa, M. V., Sosa, P. V., & Rockstroh, B. (1996). Visually induced gamma-band responses in human electroencephalographic activity— a link to animal studies. Experimental Brain Research, 112(1), 96-102. http://dx.doi.org/10.1007/BF00227182
Müller, M. M., & Gruber, T. (2001). Induced gamma-band responses in the human EEG are related to attentional information processing. Visual Cognition, 8, 579–592.
Müller, M. M., Gruber, T., &Keil, A. (2000).Modulation of induced gamma band activity in the human EEG by attention and visual information processing.International Journal of Psychophysiology, 38(3), 283–299. http://dx.doi.org/10.1016/S0167-8760(00)00171-9
Murias, M., Webb, S. J., Greenson, J., & Dawson, G. (2007). Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biological Psychiatry, 62(3), 270–273. http://dx.doi.org/10.1016/j.biopsych.2006.11.012
Murphy, K. R., &Myors, B. (2004).Statistical power analysis: A simple and general model for traditional and modern hypothesis tests (2nded.). Mahwah, NJ: Lawrence Erlbaum Associates.
Näätänen, R. A., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313–329.
Näätänen, R., &Michie, P. T. (1979). Early selective-attention effects on the evoked potential: A critical review and reinterpretation. Biological Psychology, 8(2), 81–136. http://dx.doi.org/10.1016/0301-0511(79)90053-X
Näätänen, R., Schröger, E., Karakaş, S., Tervaniemi, M., &Paavilainen, P. (1993). Development of a memory trace for a complex sound in the human brain. NeuroReport, 4, 503–506.
Oades, R. D., Walker, M. K., Geffen, L. B., &Stern, L. M. (1988).Event-related potentials in autistic and healthy children on an auditory choice reaction time task.International Journal of Psychophysiology, 6(1), 25–37.
Oberman, L. M., Rotenberg, A., &Pascual-Leone, A. (2013).Use of transcranial magnetic stimulation in autism spectrum disorders. Journal of Autism and Developmental Disorders, 45(2), 524–536. http://dx.doi.org/10.1007/s10803-013-1960-2
Ogawa, A.,Ukai, S., Shinosaki, K., Yamamoto, M., Kawaguchi, S., Ishii, R., &Takeda, M. (2004). Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans. Neuroscience Letters, 358(3), 193–196. http://dx.doi.org/10.1016/j.neulet.2004.01.038
Orekhova, E. V., & Stroganova, T. A. (2014). Arousal and attention re-orienting in autism spectrum disorders: Evidence from auditory event-related potentials. Frontiers in Human Neuroscience, 8(1), 34. http://dx.doi.org/10.3389/fnhum.2014.00034
Orekhova, E. V., Stroganova, T.A.,Nygren, G., Tsetlin, M. M., Posikera, I.N., Gillberg, C., & Elam, M. (2007). Excess of high frequency electroencephalogram oscillations in boys with autism.Biological Psychiatry, 62(9), 1022–1029. http://dx.doi.org/10.1016/j.biopsych.2006.12.029
Padmanabhapillai, A., Porjesz, B., Ranganathan, M., Jones, K. A., Chorlian, D. B., Tang, Y., … Begleiter, H. (2006). Suppression of early evoked gamma band response in male alcoholics during a visual oddball task.International Journal of Psychophysiology, 60(1), 15–26. http://dx.doi.org/10.1016/j.ijpsycho.2005.03.026
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000).Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity.Current Opinion in Neurobiology, 10(2), 232–237. http://dx.doi.org/10.1016/S0959-4388(00)00081-7
Pfurtscheller, G., &Aranibar, A. (1977). Event-related cortical desynchronisation detected by power measurements of scalp EEG. Electroencephalography and Clinical Neurophysiology, 42(6), 817–826. http://dx.doi.org/10.1016/0013-4694(77)90235-8
Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857. http://dx.doi.org/10.1016/S1388-2457(99)00141-8
Polich, J. (2003). Theoretical overview of P3a and P3b. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (pp. 83–98). Boston: Kluwer Academic Press. http://dx.doi.org/10.1007/978-1-4615-0294-4_5
Port, R. G., Anwar, A. R., Ku, M., Carlson, G. C., Siegel, S. J., & Roberts, T. P. (2015). Prospective MEG biomarkers in ASD: Pre-clinical evidence and clinical promise of electrophysiological signatures. Yale Journal of Biology and Medicine, 88(1), 25–36.
Potts, G. F., Dien, J., Hartry-Speiser, A. L., McDougal, L. M., & Tucker, D. M. (1998).Dense sensor array topography of the event-related potential to task-relevant auditory stimuli.Electroencephalography and Clinical Neurophysiology, 106(5), 444–456. http://dx.doi.org/10.1016/S0013-4694(97)00160-0
Potts, G. F., Liotti, M., Tucker, D. M., & Posner, M. I. (1996). Frontal and inferior temporal cortical activity in visual target detection: Evidence from high spatially sampled event-related potentials. Brain Topography, 9(1), 3–14. http://dx.doi.org/10.1007/BF01191637
Potts, G. F., Patel, S. H., &Azzam, P. N. (2004).Impact of instructed relevance on the visual ERP.International Journal Psychophysiology, 52(2), 197–209. http://dx.doi.org/10.1016/j.ijpsycho.2003.10.005
Pritchard, W. (1981).Psychophysiology of P300.Psychological Bulletin, 89(3), 506–540.http://dx.doi.org/10.1037/0033-2909.89.3.506
Puts, N. A. J., Wodka, E. L., Tommerdahl, M., Mostofsky, S. H., &Edden, R. A. E. (2014).Impaired tactile processing in children with autism spectrum disorder.Journal of Neurophysiology, 111(9), 1803–1811. http://dx.doi.org/10.1152/jn.00890.2013
Quintana, H. (2005).Transcranial magnetic stimulation in persons younger than the age of 18.Journal of ECT, 21(2), 88–95.
Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology.’International Journal of Psychophysiology, 63(2), 164–172. http://dx.doi.org/10.1016/j.ijpsycho.2006.03.012
Rogers, R. L., Basile, L. F. H., Papanicolaou, A. C., & Eisenberg, H. M. (1993). Magnetoencephalography reveals two distinct sources associated with late positive evoked potentials during visual oddball task. Cerebral Cortex, 3(2), 163–169. http://dx.doi.org/10.1093/cercor/3.2.163
Rojas, D. C., &Wilson, L. B. (2014). Gamma-band abnormalities as markers of autism spectrum disorders. Biomarkers in Medicine, 8(3), 353¬–368. http://dx.doi.org/10.2217/bmm.14.15
Rossi, S., & Rossini, P. M. (2004).TMS in cognitive plasticity and the potential for rehabilitation.Trends in Cognitive Sciences, 8(6), 273–279. http://dx.doi.org/10.1016/j.tics.2004.04.012
Rubenstein, J. L. R., &Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2(5), 255–267. http://dx.doi.org/10.1034/j.1601-183X.2003.00037.x
Seri, S., Cerquiglini, A., Pisani, F., &Curatolo, P. (1999). Autism in tuberous sclerosis: Evoked potential evidence for a deficit in auditory sensory processing. Clinical Neurophysiology,110, 1825–1830.
Serial Response Box [Apparatus]. Sharpsburg, PA: Psychology Software Tools, Inc.
Sheer, D. E. (1976).Focused arousal and 40 Hz EEG. In R. M. Knight, & D. J. Baker (Eds.), The neuropsychology of learning disorders. Baltimore, MD: University Park Press.
Shibata, T., Shimoyama, I., Ito, T., Abla, D., Iwasa, H., Koseki, K., … Nakajima, Y. (1999). Attention changes the peak latency of the visual gamma-band oscillation of the EEG. NeuroReport, 10(6), 1167–1170.
Shuang, M., Liu, J., Jia, M. X., Yang, J. Z., Wu, S. P., Gong, X. H., … Zhang, D. (2004). Family-based association study between autism and glutamate receptor 6 gene in Chinese Han trios.American Journal of Medical Genetics: Neuropsychiatric Genetics, 131B(1), 48–50. http://dx.doi.org/10.1002/ajmg.b.30025
Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24(1), 49–65, 111–125.
Sokhadze, E., Baruth, J., El-Baz, A., Horrell, T., Sokhadze, G., Carroll, T., … Casanova, M. F. (2010). Impaired error monitoring and correction function in autism. Journal of Neurotherapy, 14(2), 79–95. http://dx.doi.org/10.1080/10874201003771561
Sokhadze, E. M., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., &Casanova, M. F. (2012). Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism. Applied Psychophysiology and Biofeedback, 37(2), 91–102. http://dx.doi.org/10.1007/s10484-012-9182-5
Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., … Casanova, M. F. (2010). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Applied Psychophysiology and Biofeedback, 35(2), 147–161. http://dx.doi.org/10.1007/s10484-009-9121-2
Sokhadze, E., Baruth, J., Tasman, A., Sears, L., Mathai, G., El-Baz, A., & Casanova, M. F. (2009).Event-related potential study of novelty processing abnormalities in autism.Applied Psychophysiology and Biofeedback, 34(1), 37–51. http://dx.doi.org/10.1007/s10484-009-9074-5
Sokhadze, E. M., Casanova, M. F., &Baruth, J. (2013). Transcranial magnetic stimulation inautism spectrum disorders. In L. Alba-Ferrara (Ed.), Transcranial magnetic stimulation: methods, clinical uses and effect on the brain (pp. 219–231). New York: NOVA Science Publishers.
Sokhadze, E. M., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009).Effect of a low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism.Journal of Autism and Developmental Disorders, 39(4), 619–634. http://dx.doi.org/10.1007/s10803-008-0662-7
Sokhadze, E. M., El-Baz, A. S., Sears, L. L., Opris, I., & Casanova, M. F. (2014).rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Frontiers in Systems Neuroscience, 8, 134. http://dx.doi.org/10.3389/fnsys.2014.00134
Sokhadze, E. M., El-Baz, A. S., Tasman, A., Sears, L. L., Wang, Y., Lamina, E. V., & Casanova, M. F. (2014). Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: Aan exploratory study. Applied Psychophysiology and Biofeedback, 39(3–4), 237–257. http://dx.doi.org/10.1007/s10484-014-9264-7
Srinivasan, R., Tucker, D. M., &Murias, M. (1998).Estimating the spatial Nyquist of the human EEG.Behavioral Research Methods, Instruments,and Computers, 30(1), 8–19.http://dx.doi.org/10.3758/BF03209412
Stroganova, T. A., Butorina, A. V., Sysoeva, O. V., Prokofyev, A. O., Nikolaeva, A. Y., Tsetlin, M. M., & Orekhova, E. V. (2015). Altered modulation of gamma oscillation frequency by speed of visual motion in children with autism spectrum disorders.Journal of Neurodevelopmental Disorders, 7(1), 21. http://dx.doi.org/10.1186/s11689-015-9121-x
Stroganova, T. A., Nygren, G., Tsetlin, M. M., Posikera, I. N., Gillberg, C., Elam, M., &Orekhova, E. V. (2007).Abnormal EEG lateralization in boys with autism.Clinical Neurophysiology, 118(8), 1842–1854. http://dx.doi.org/10.1016/j.clinph.2007.05.005
Stroganova, T. A., Orekhova, E. V., Prokofyev, A. O., Tsetlin, M. M., Gratchev, V. V., Morozov, A. A., &Obukhov, Y. V. (2012). High-frequency oscillatory response to illusory contour in typically developing boys and boys with autism spectrum disorders.Cortex, 48(6), 701–717. http://dx.doi.org/10.1016/j.cortex.2011.02.016
Sun, L., Grützner, C., Bölte, S., Wibral, M., Tozman, T., Schlitt, S., …Uhlhaas, P. J. (2012). Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: Evidence for dysfunctional network activity in frontal-posterior cortices. The Journal of Neuroscience, 32(28), 9563–9573. http://dx.doi.org/10.1523/JNEUROSCI.1073-12.2012
Tallon-Baudry, C. (2003). Oscillatory synchrony and human visual cognition.Journal of Physiology–Paris, 97(2–3), 355–363. http://dx.doi.org/10.1016/j.jphysparis.2003.09.009
Tallon-Baudry, C., Bertrand, O., Delpuech, C., &Pernier, J. (1996).Stimulus specificity of phase-locked and non-phase-locked 40Hz visual responses in human. The Journal of Neuroscience, 16(13), 4240–4249.
Tallon-Baudry, C., Bertrand, O., Hénaff, M.-A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus.Cerebral Cortex, 15(5), 654–662.http://dx.doi.org/10.1093/cercor/bhh167
Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. The Journal of Neuroscience, 18(11), 4244–4254.
Tavassoli, T., Bellesheim, K., Tommerdahl, M., Holden, J. M., Kolevzon, A., &Buxbaum, J. D. (2016).Altered tactile processing in children with autism spectrum disorder.Autism Research, 9(6), 616–620. http://dx.doi.org/10.1002/aur.1563
Thakkar, K. N., Polli, F. E., Joseph, R. M., Tuch, D. S., Hadjikhani, N., Barton, J. J. S., &Manoach, D. S. (2008). Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD).Brain, 131(9), 2464–2478. http://dx.doi.org/10.1093/brain /awn099
Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T.-P., Pierce, K., &Courchesne, E. (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Cognitive Brain Research, 11(1), 127–145. http://dx.doi.org/10.1016/S0926-6410(00)00072-0
Uhlhaas, P. J., & Singer, W. (2007). What do disturbances in neural synchrony tell us about autism? Biological Psychiatry, 62(3), 190–191. http://dx.doi.org/10.1016/j.biopsych.2007.05.023
USE3 Physiolab [Computer software]. (2004). Poulsbo, WA: J&J Engineering, Inc.
Uzunova, G., Pallanti, S., & Hollander, E. (2015). Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. The World Journal of Biological Psychiatry, 17(3), 174–186. http://dx.doi.org /10.3109/15622975.2015.1085597
Vlamings, P. H. J. M., Jonkman, L. M., Hoeksma, M. R., van Engeland, H., &Kemner, C. (2008). Reduced error monitoring in children with autism spectrum disorder: An ERP study.European Journal of Neuroscience,28(2), 399–406. http://dx.doi.org/10.1111/j.1460-9568.2008.06336.x
Von Stein, A., Rappelsberger, P., Sarnthein, J., & Petsche, H. (1999). Synchronization between temporal and parietal cortex during multimodal object processing in man.Cerebral Cortex, 9(2), 137–150.http://dx.doi.org/10.1093/cercor/9.2.137
Wagner, T., Rushmore, J., Eden, U., & Valero-Cabre, A. (2009). Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex, 45(9), 1025–1034. http://dx.doi.org/10.1016/j.cortex.2008.10.002
Wall, C. A., Croarkin, P. E., Sim, L. A., Husain, M. M., Janicak, P. G., Kozel, F. A., … Sampson, S. M. (2011). Adjunctive use of repetitive transcranial magnetic stimulation in depressed adolescents: A prospective, open pilot study. The Journal of Clinical Psychiatry, 72(9), 1263–1269. http://dx.doi.org/10.4088/JCP.11m07003
Wassermann, E. M., Grafman, J., Berry, C., Hollnagel, C., Wild, K., Clark, K., & Hallett, M. (1996).Use and safety of a new repetitive transcranial magnetic stimulator.Electroencephalography and Clinical Neurophysiology, 101(5), 412–417. http://dx.doi.org/10.1016/S0921-884X(96)96004-X
Wassermann, E. M., &Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: Areview. Clinical Neurophysiology, 112(8), 1367–1377. http://dx.doi.org/10.1016/S1388-2457(01)00585-5
Wassermann, E. M., & Zimmermann, T. (2012). Transcranial magnetic stimulation: Therapeutic promises and scientific gaps. Pharmacology and Therapeutics, 133(1), 98–107. http://dx.doi.org/10.1016/j.pharmthera.2011.09.003
Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: Harcourt Assessment, Inc.
Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment, Inc.
Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J.,Baron-Cohen, S., & Bullmore, E. (2005).Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome.Biological Psychiatry,57(9), 991–998.http://dx.doi.org/10.1016/j.biopsych.2005.01.028
Werkle-Bergner, M., Shing, Y. L., Müller, V., Li, S.-C., &Lindenberger, U. (2009). EEG gamma-band synchronization in visual coding from childhood to old age: Evidence from evoked power and inter-trial phase locking. Clinical Neurophysiology,120(7), 1291–1302. http://dx.doi.org/10.1016/j.clinph.2009.04.012
Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000). Inhibition-based rhythms: Experimental and mathematical observations on network dynamics. International Journal of Psychophysiology, 38(3), 315–336.http://dx.doi.org/10.1016/S0167-8760(00)00173-2
Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62(3), 192–197. http://dx.doi.org/10.1016/j.biopsych.2006.07.002
Wu, A. D., Fregni, F., Simon, D. K., Deblieck, C., &Pascual-Leone, A. (2008).Noninvasive brain stimulation for Parkinson’s disease and dystonia.Neurotherapeutics, 5(2), 345–361. http://dx.doi.org/10.1016/j.nurt.2008.02.002
Yamazaki, T., Kamijo, K., Kenmochi, A., Fukuzumi, S., Kiyuna, T., Takaki, Y., & Kuroiwa, Y. (2000). Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response.Brain Topography, 12(3), 159–175.http://dx.doi.org/10.1023/A:1023467806268
Ziemann,U. (2004). TMS induced plasticity in human cortex. Reviews in the Neurosciences, 15(4), 253–266.http://dx.doi.org/10.1515/REVNEURO.2004.15.4.253
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).