Comparing DC offset and impedance readings in the assessment of electrode connection quality
DOI:
https://doi.org/10.15540/nr.2.1.29Keywords:
EEG, electrode, interference, impedance, DC offset, QEEGAbstract
EEG electrode impedance measurements of 5,000 ohms or less are required by common standards of practice to minimize artifacts due to electro-magnetic interference (EMI). Some manufacturers of amplifiers geared toward the neurofeedback market do not provide on-board impedance monitoring, but provide DC offset measurements. To discover if DC offset is a reliable measure of connection quality, measurements of DC offset and impedance, each independently taken by students in a university graduate level course in neurofeedback over a one year period were analyzed retrospectively. DC offset was not found to have predictive value of a standard impedance level. Additionally, 19 channel EEGs collected within manufacturer recommended parameters of DC offset using a high-impedance amplifier were analyzed to assess the level of EMI pollution of QEEG data. Visible peaks of EMI in the spectra in at least one channel in each of these recordings were identified. A sample of EMI pollution of QEEG results is presented. Together, these findings suggest that DC offset is not a reliable measure of electrode connection quality.
References
American Association of Sleep Technologists, Technical Guidelines: Standard Polysomnography (2012). Retrieved from http://www.aastweb.org
American Clinical Neurophysiology Society, Guideline One: Mininum Technical Requirements for Performing Clinical Electroencephalography (2008). Retrieved from http://www.acns.org/pdf
Ferree, T. C., Luu, P., Russell, G. S., Tucker, D.M. (2001). Scalp electrode impedance, infection risk, and EEG data quality, Clinical Neurophysiology, 112 536-544. http://dx.doi.org/10.1016/S1388-2457(00)00533-2
Kappenman, E. S., & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings, Psychophysiology, 47, 888-904. http://dx.doi.org/10.1016/S1388-2457(00)00533-2
Kamp, A., Pfurtscheller, G., Edlinger, G., & Lopes da Silva, F. (2005). Technological Basis of EEG Recording. In Niedermeyer, E., & Lopes da Silva, F. H. (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 127-138). Philadelphia: Lippincott Williams & Wilkins.
Tatum, William (2014). Handbook of EEG Interpretation. New York, NY: Demos Medical Publishing.
Tyner, Fay S. (1983). Fundamentals of EEG Technology. Philadelphia, PA: Lippincott Williams & Wilkins.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).