Small-World Network Analysis of Cortical Connectivity in Chronic Fatigue Syndrome Using Quantitative EEG
DOI:
https://doi.org/10.15540/nr.4.3-4.125Keywords:
chronic fatigue syndrome, myalgic encephalomyelitis, qEEG, eLORETA, graph theoryAbstract
The aim of this study was to explore the relationship between complex brain networks in people with Chronic Fatigue Syndrome (CFS) and neurocognitive impairment. Quantitative EEG (qEEG) recordings were taken from 14 people with CFS and 15 healthy controls (HCs) during an eye-closed resting condition. Exact low resolution electromagnetic tomography (eLORETA) was used to estimate cortical sources and perform a functional connectivity analysis. The graph theory approach was used to characterize network representations for each participant and derive the “small-worldness” index, a measure of the overall homeostatic balance between local and long-distance connectedness. Results showed that small-worldness for the delta band was significantly lower for patients with CFS compared to HCs. In addition, delta small-worldness was negatively associated with neurocognitive impairment scores on the DePaul Symptom Questionnaire (DSQ). Finally, delta small-worldness indicated a greater risk of complex brain network inefficiency for the CFS group. These results suggest that CFS pathology may be functionally disruptive to small-world networks. In turn, small-world characteristics might serve as a neurophysiological indicator for confirming a biological basis of cognitive symptoms, treatment outcome, and neurophysiological status of people with CFS.References
Adebimpe, A., Aarabi, A., Bourel-Ponchel, E., Mahmoudzadeh, M., & Wallois, F. (2016). EEG Resting State Functional Connectivity Analysis in Children with Benign Epilepsy with Centrotemporal Spikes. Frontiers in Neuroscience, 10, 143. doi:10.3389/fnins.2016.00143
Babiloni, C., Carducci, F., Lizio, R., Vecchio, F., Baglieri, A., Bernardini, S., . . . Frisoni, G. B. (2013). Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer's disease. Human Brain Mapping, 34(6), 1427-1446. doi:10.1002/hbm.22005
Babiloni, C., De Pandis, M. F., Vecchio, F., Buffo, P., Sorpresi, F., Frisoni, G. B., & Rossini, P. M. (2011). Cortical sources of resting state electroencephalographic rhythms in Parkinson's disease related dementia and Alzheimer's disease. Clinical Neurophysiology, 122(12), 2355-2364. doi:10.1016/j.clinph.2011.03.029
Babiloni, C., Del Percio, C., Capotosto, P., Noce, G., Infarinato, F., Muratori, C., . . . Lupattelli, T. (2016). Cortical sources of resting state electroencephalographic rhythms differ in relapsing-remitting and secondary progressive multiple sclerosis. Clinical Neurophysiology, 127(1), 581-590. doi:10.1016/j.clinph.2015.05.029
Barnden, L. R., Crouch, B., Kwiatek, R., Burnet, R., & Del Fante, P. (2015). Evidence in chronic fatigue syndrome for severity-dependent upregulation of prefrontal myelination that is independent of anxiety and depression. NMR in Biomedicine, 28(3), 404-413. doi:10.1002/nbm.3261
Barnden, L. R., Crouch, B., Kwiatek, R., Burnet, R., Mernone, A., Chryssidis, S., . . . Del Fante, P. (2011). A brain MRI study of chronic fatigue syndrome: Evidence of brainstem dysfunction and altered homeostasis. NMR in Biomedicine, 24(10), 1302-1312. doi:10.1002/nbm.1692
Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6), 512-523. doi:10.1177/1073858406293182
Boissoneault, Jeff, Letzen, Janelle, Lai, Song, O'Shea, Andrew, Craggs, Jason, Robinson, Michael E., & Staud, Roland. (2016). Abnormal resting state functional connectivity in patients with chronic fatigue syndrome: An arterial spin-labeling fMRI study. Magnetic Resonance Imaging, 34(4), 603-608. doi:10.1016/j.mri.2015.12.008
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews. Neuroscience, 13(5), 336-349. doi:10.1038/nrn3214
Busichio, K., Tiersky, L. A., Deluca, J., & Natelson, B. H. (2004). Neuropsychological deficits in patients with chronic fatigue syndrome. Journal of the International Neuropsychological Society, 10(2), 278-285. doi:10.1017/s1355617704102178
Buzsaki, G. (2006). Rhythms of the Brain: Oxford University Press.
Buzsaki, G., & Watson, B. O. (2012). Brain rhythms and neural syntax: Implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues in Clinical Neuroscience, 14(4), 345-367.
Buzsáki, György, & Freeman, Walter. (2015). Editorial overview: Brain rhythms and dynamic coordination. Current Opinion in Neurobiology, 31, v-ix. doi:10.1016/j.conb.2015.01.016
Carruthers, B.M., Jain, A. K., de Meirleir, K., Peterson, D. L., Klimas, N. G., Lerner, A. M., . . . Van de Sande, M. I. (2003). Myalgic encephalomyelitits/chronic fatigue syndrome: Clinical working case definition, diagnostic, and treatment protocols Journal of Chronic Fatigue Syndrome, 11(1).
Carruthers, B.M., van de Sande, M.I., De Meirleir, K.L., Klimas, N.G., Broderick, G., Mitchell, T., . . . Stevens, S. . (2011). Myalgic Encephalomyelitis: International Consensus Criteria. Journal of Internal Medicine doi:10.1111/j.1365- 2796.2011.02428.x
Caseras, X., Mataix-Cols, D., Giampietro, V., Rimes, K. A., Brammer, M., Zelaya, F., . . . Godfrey, E. L. (2006). Probing the working memory system in chronic fatigue syndrome: A functional magnetic resonance imaging study using the n-back task. Psychosomatic Medicine, 68(6), 947-955. doi:10.1097/01.psy.0000242770.50979.5f
Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods, 158(2), 300-312. doi:10.1016/j.jneumeth.2006.05.033
Cockshell, S. J., & Mathias, J. L. (2010). Cognitive functioning in chronic fatigue syndrome: A meta-analysis. Psychological medicine, 40(8), 1253-1267. doi:10.1017/s0033291709992054
Constant, E. L., Adam, S., Gillain, B., Lambert, M., Masquelier, E., & Seron, X. (2011). Cognitive deficits in patients with chronic fatigue syndrome compared to those with major depressive disorder and healthy controls. Clinical Neurology and Neurosurgery, 113(4), 295-302. doi:10.1016/j.clineuro.2010.12.002
Cook, D. B., O'Connor, P. J., Lange, G., & Steffener, J. (2007). Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage, 36(1), 108-122. doi:10.1016/j.neuroimage.2007.02.033
Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(Pt 8), 2382-2395. doi:10.1093/brain/awu132
Deco, G., Jirsa, V., & Friston, K. J. (2012). The dynamical structural basis of brain activity. In M. I. Rabinovich, K. Friston, & P. Varona (Eds.), Principles of Brain Dynamics: Global State Interactions (pp. 1-23). Cambridge, MA: MIT Press.
DeLuca, J., Johnson, S. K., & Natelson, B. H. (1994). Neuropsychiatric status of patients with chronic fatigue syndrome: An overview. Toxicology and Industrial Health, 10(4-5), 513-522.
Dobbs, B. M., Dobbs, A. R., & Kiss, I. (2001). Working memory deficits associated with chronic fatigue syndrome. Journal of the International Neuropsychological Society, 7(3), 285-293.
Flor-Henry, P., Lind, J. C., & Koles, Z. J. (2010). EEG source analysis of chronic fatigue syndrome. Psychiatry Research, 181(2), 155-164. doi:10.1016/j.pscychresns.2009.10.007
Fukuda, K., Straus, S. E., Hickie, I., Sharpe, M. C., Dobbins, J. G., & Komaroff, A. (1994). The chronic fatigue syndrome: A comprehensive approach to its definition and study. Annals of Internal Medicine, 121(12), 953-959.
Gay, C., Robinson, M. E., Lai, S., O'Shea, A., Craggs, J., Price, D. D., & Staud, R. (2015). Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses. Brain Connectivity. doi:10.1089/brain.2015.0366
Gloor, P., Ball, G., & Schaul, N. (1977). Brain lesions that produce delta waves in the EEG. Neurology, 27(4), 326-333.
Grafman, J., Schwartz, V., Dale, J. K., Scheffers, M., Houser, C., & Straus, S. E. (1993). Analysis of neuropsychological functioning in patients with chronic fatigue syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 56(6), 684-689.
Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., . . . Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation, 5, 25. doi:10.1186/1743-0003-5-25
Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)--A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377-381. doi:10.1016/j.jbi.2008.08.010
Hata, M., Kazui, H., Tanaka, T., Ishii, R., Canuet, L., Pascual-Marqui, R. D., . . . Takeda, M. (2016). Functional connectivity assessed by resting state EEG correlates with cognitive decline of Alzheimer's disease: An eLORETA study. Clinical Neurophysiology, 127(2), 1269-1278. doi:10.1016/j.clinph.2015.10.030
Hopkins, R. O., & Jackson, J. C. (2006). Long-term neurocognitive function after critical illness. Chest, 130(3), 869-878. doi:10.1378/chest.130.3.869
Humphries, M. D., & Gurney, K. (2008). Network 'small-world-ness': a quantitative method for determining canonical network equivalence. PloS One, 3(4), e0002051. doi:10.1371/journal.pone.0002051
Jason, L. A., So, S., Brown, A., Sunnquist, M., & Evans, M. (2015). Test-retest reliability of the DePaul Symptom Questionnaire. Fatigue Biomedicine Health & Behavior, 3(1), 16-32.
Jason, L. A., Sunnquist, M., Brown, A., Furst, J., Cid, M., Farietta, J., . . . Strand, E. B. (2015). Factor analysis of the DePaul Symptom Questionnaire: Identifying core domains. Journal of Neurology and Neurobiology, 1(4). doi:10.16966/2379-7150.114
Jason, L. A., Zinn, M. L., & Zinn, M. A. (2015). Myalgic encephalomyelitis: symptoms and biomarkers. Current Neuropharmacology, 13(5), 701-734.
John, E. R. (2005). From synchronous neuronal discharges to subjective awareness? In S. Laureys (Ed.), Progress in Brain Research (Vol. 150): Elsevier.
Johnson, S. K., DeLuca, J., & Natelson, B. H. (1996). Assessing somatization disorder in the chronic fatigue syndrome. Psychosomatic Medicine, 58(1), 50-57.
Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage, 34(4), 1600-1611. doi:10.1016/j.neuroimage.2006.09.024
Kierkels, J. J., van Boxtel, G. J., & Vogten, L. L. (2006). A model-based objective evaluation of eye movement correction in EEG recordings. IEEE Transactions on Biomedical Engineering, 53(2), 246-253. doi:10.1109/tbme.2005.862533
Kim, B. H., Namkoong, K., Kim, J. J., Lee, S., Yoon, K. J., Choi, M., & Jung, Y. C. (2015). Altered resting-state functional connectivity in women with chronic fatigue syndrome. Psychiatry Research, 234(3), 292-297. doi:10.1016/j.pscychresns.2015.10.014
Kirk, R. E. (2013). Experimental design: Procedures for the behavioral sciences (4th ed.). Los Angeles: Sage.
Klimesch, W., Freunberger, R., Sauseng, P., & Gruber, W. (2008). A short review of slow phase synchronization and memory: evidence for control processes in different memory systems? Brain Research, 1235, 31-44. doi:10.1016/j.brainres.2008.06.049
Komaroff, A. L., & Buchwald, D. (1991). Symptoms and signs of chronic fatigue syndrome. Reviews of Infectious Diseases, 13 Suppl 1, S8-11.
Koziol, L. F., & Budding, D. E. (2009). Subcortical Structures and Cognition: Implications for Neuropsychological Assessment. New York: Springer.
Lange, G., Steffener, J., Cook, D. B., Bly, B. M., Christodoulou, C., Liu, W. C., . . . Natelson, B. H. (2005). Objective evidence of cognitive complaints in Chronic Fatigue Syndrome: A BOLD fMRI study of verbal working memory. Neuroimage, 26(2), 513-524. doi:10.1016/j.neuroimage.2005.02.011
Le Van Quyen, M. (2011). The brainweb of cross-scale interactions. New Ideas in Psychology, 29(2), 57-63. doi:10.1016/j.newideapsych.2010.11.001
Lehmann, D., Faber, P. L., Gianotti, L. R., Kochi, K., & Pascual-Marqui, R. D. (2006). Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization. Journal of Physiology, Paris, 99(1), 29-36. doi:10.1016/j.jphysparis.2005.06.005
Majer, M., Welberg, L. A., Capuron, L., Miller, A. H., Pagnoni, G., & Reeves, W. C. (2008). Neuropsychological performance in persons with chronic fatigue syndrome: results from a population-based study. Psychosomatic Medicine, 70(7), 829-836. doi:10.1097/PSY.0b013e31817b9793
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483-506. doi:10.1016/j.tics.2011.08.003
Menon, V. (2012). Functional connectivity, neurocognitive networks, and brain dynamics. In M. I. Rabinovich, K. J. Friston, & P. Varona (Eds.), Principles of Brain Dynamics: Global State Interactions (pp. 27-47). Cambridge, MA: MIT Press.
Minati, L., Varotto, G., D'Incerti, L., Panzica, F., & Chan, D. (2013). From brain topography to brain topology: Relevance of graph theory to functional neuroscience. Neuroreport, 24(10), 536-543. doi:10.1097/WNR.0b013e3283621234
Murdock, K. W., Wang, X. S., Shi, Q., Cleeland, C. S., Fagundes, C. P., & Vernon, S. D. (2016). The utility of patient-reported outcome measures among patients with myalgic encephalomyelitis/chronic fatigue syndrome. Quality of Life Research. doi:10.1007/s11136-016-1406-3
Nakatomi, Y., Mizuno, K., Ishii, R., Wada, Y., Tanaka, M., Tazawa, S., . . . Watanabe, Y. (2014). Neuroinflammation in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET study. Journal of Nuclear Medicine, 55(6), 945-950.
Niedermeyer, E., & Lopez da Silva, F. (2005). Electroencephalography: Basic principles, clinical applications and related fields (5th ed. ed.). Philadelphia: Lippincott Williams and Wilkins.
Nunez, P. L., Srinivasan, R., & Fields, R. D. (2014). EEG functional connectivity, axon delays and white matter disease. Clinical Neurophysiology(0). doi:10.1016/j.clinph.2014.04.003
Ocon, A. J. (2013). Caught in the thickness of brain fog: Exploring the cognitive symptoms of chronic fatigue syndrome. Frontiers in Physiology, 4, 63. doi:10.3389/fphys.2013.00063
Pascual-Marqui, R. D. (2007a). Coherence and phase synchronization: Generalization to pairs of multivariate time series, and removal of zero-lag contribution (arXiv:0706.1776v3 [stat.ME]). Retrieved from http://arxiv.org/pdf/0706.1776
Pascual-Marqui, R. D. (2007b). Discrete, 3D distributed linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization ( arXiv:0710.3341 [math-ph]). Retrieved from https://arxiv.org/ftp/arxiv/papers/0710/0710.3341.pdf
Pascual-Marqui, R. D. (2007c). Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: Frequency decomposition (arXiv:0711.1455[stat.ME]). Retrieved from https://arxiv.org/pdf/0711.1455v1
Pascual-Marqui, R. D. (2015). LORETA-KEY software (Version 2015-12-22). Zurich, Switzerland: KEY Institute for Brain-Mind Research. Retrieved from http://www.uzh.ch/keyinst/loreta.htm
Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B., . . . Kinoshita, T. (2011). Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 369(1952), 3768-3784. doi:10.1098/rsta.2011.0081
Puri, B. K., Jakeman, P. M., Agour, M., Gunatilake, K. D., Fernando, K. A., Gurusinghe, A. I., . . . Gishen, P. (2012). Regional grey and white matter volumetric changes in myalgic encephalomyelitis (chronic fatigue syndrome): A voxel-based morphometry 3 T MRI study. British Journal of Radiology, 85(1015), e270-273. doi:10.1259/bjr/93889091
Rossini, P. M., Rossi, S., Babiloni, C., & Polich, J. (2007). Clinical neurophysiology of aging brain: From normal aging to neurodegeneration. Progress in Neurobiology, 83(6), 375-400. doi:10.1016/j.pneurobio.2007.07.010
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059-1069. doi:10.1016/j.neuroimage.2009.10.003
Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience and Biobehavioral Reviews, 32(5), 1001-1013. doi:10.1016/j.neubiorev.2008.03.014
Schaul, N., Gloor, P., & Gotman, J. (1981). The EEG in deep midline lesions. Neurology, 31(2), 157-167.
Sepulcre, J. (2014). Functional Streams and Cortical Integration in the Human Brain. The Neuroscientist, 20(5), 499-508. doi:10.1177/1073858414531657
Sherlin, L., Budzynski, T., Kogan Budzynski, H., Congedo, M., Fischer, M. E., & Buchwald, D. (2007). Low-resolution electromagnetic brain tomography (LORETA) of monozygotic twins discordant for chronic fatigue syndrome. NeuroImage, 34(4), 1438-1442. doi:10.1016/j.neuroimage.2006.11.007
Sporns, Olaf, & Honey, Christopher J. (2006). Small worlds inside big brains. Proceedings of the National Academy of Sciences, 103(51), 19219-19220. doi:10.1073/pnas.0609523103
Stam, C. J. (2010). Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. International Journal of Psychophysiology, 77(3), 186-194. doi:10.1016/j.ijpsycho.2010.06.024
Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews. Neuroscience, 15(10), 683-695. doi:10.1038/nrn3801
Steriade, M. (2005). Cellular substrates of brain rhythms. In E. Niedermeyer & F. H. Lopes de Silva (Eds.), Electroencephalography: Basic principles, clinical applications and related fields (pp. 31-83). New York: Lippincott Williams & Wilkins.
Steriade, M., & Pare, D. (2006). Gating in cerebral networks. Cambridge: Cambridge University Press.
Telesford, Q. K., Simpson, S. L., Burdette, J. H., Hayasaka, S., & Laurienti, P. J. (2011). The brain as a complex system: using network science as a tool for understanding the brain. Brain Connectivity, 1(4), 295-308. doi:10.1089/brain.2011.0055
Thatcher, R. W. (2016). Handbook of Quantitattive Electroencephalography and EEG Biofeedback. St. Petersburg, FLA: ANI Publishing.
Thatcher, R. W., North, D. M., & Biver, C. J. (2008). Intelligence and EEG phase reset: a two compartmental model of phase shift and lock. NeuroImage, 42(4), 1639-1653. doi:10.1016/j.neuroimage.2008.06.009
Thomas, M., & Smith, A. (2009). An investigation into the cognitive deficits associated with chronic fatigue syndrome. The Open Neurology Journal, 3, 13-23. doi:10.2174/1874205x00903010013
Van Den Eede, F., Moorkens, G., Hulstijn, W., Maas, Y., Schrijvers, D., Stevens, S. R., . . . Sabbe, B. G. (2011). Psychomotor function and response inhibition in chronic fatigue syndrome. Psychiatry Research, 186(2-3), 367-372. doi:10.1016/j.psychres.2010.07.022
van den Heuvel, M. P., & Sporns, O. (2013). An anatomical substrate for integration among functional networks in human cortex. The Journal of Neuroscience, 33(36), 14489-14500. doi:10.1523/jneurosci.2128-13.2013
van Straaten, E. C., & Stam, C. J. (2013). Structure out of chaos: Functional brain network analysis with EEG, MEG, and functional MRI. European Neuropsychopharmacology, 23(1), 7-18. doi:10.1016/j.euroneuro.2012.10.010
Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., . . . Rossini, P. M. (2015). Cortical brain connectivity evaluated by graph theory in dementia: A correlation study between functional and structural data. Journal of Alzheimer's Disease, 45(3), 745-756. doi:10.3233/jad-142484
Vecchio, F., Miraglia, F., Curcio, G., Della Marca, G., Vollono, C., Mazzucchi, E., . . . Rossini, P. M. (2015). Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis: A study via graph theory. Clinical Neurophysiology, 126(6), 1108-1116. doi:10.1016/j.clinph.2014.09.019
Vecchio, F., Miraglia, F., Porcaro, C., Cottone, C., Cancelli, A., Rossini, P. M., & Tecchio, F. (2017). Electroencephalography-Derived Sensory and Motor Network Topology in Multiple Sclerosis Fatigue. Neurorehabilitation and Neural Repair, 31(1), 56-64. doi:10.1177/1545968316656055
Vecchio, F., Miraglia, F., Quaranta, D., Granata, G., Romanello, R., Marra, C., . . . Rossini, P. M. (2016). Cortical connectivity and memory performance in cognitive decline: A study via graph theory from EEG data. Neuroscience, 316, 143-150. doi:10.1016/j.neuroscience.2015.12.036
Vysata, O., Kukal, J., Prochazka, A., Pazdera, L., Simko, J., & Valis, M. (2014). Age-related changes in EEG coherence. Neurologia i Neurochirurgia Polska, 48(1), 35-38. doi:10.1016/j.pjnns.2013.09.001
Wallstrom, G. L., Kass, R. E., Miller, A., Cohn, J. F., & Fox, N. A. (2004). Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods. International Journal of Psychophysiology, 53(2), 105-119. doi:10.1016/j.ijpsycho.2004.03.007
Watts, Duncan J., & Strogatz, Steven H. (1998). Collective dynamics of "small-world" networks. Nature, 393(6684), 440-442.
Westmoreland, B. (2005). The EEG in Cerebral Inflammatory Processes. In E. Niedermeyer & F. Lopez da Silva (Eds.), Electroencephalography: Basic principles, clinical applications and related fields (5th ed. ed., pp. 323-337). Philadelphia: Lippincott Williams and Wilkins.
Wig, G. S., Schlaggar, B. L., & Petersen, S. E. (2011). Concepts and principles in the analysis of brain networks. Annals of the New York Academy of Sciences, 1224, 126-146. doi:10.1111/j.1749-6632.2010.05947.x
Wortinger, L. A., Endestad, T., Melinder, A. M., Oie, M. G., Sevenius, A., & Bruun Wyller, V. (2016). Aberrant Resting-State Functional Connectivity in the Salience Network of Adolescent Chronic Fatigue Syndrome. PLoS One, 11(7), e0159351. doi:10.1371/journal.pone.0159351
Zinn, M. A., Zinn, M. L., Norris, J. L., Valencia, I., Montoya, J. G., & Maldonado, J. R. (2014). Cortical hypoactivation during resting EEG suggests central nervous system pathology in patients with Chronic Fatigue Syndrome. Paper presented at the Symposium conducted at the meeting of IACFS/ME 2014 Biennial Conference, San Francisco, CA, USA.
Zinn, M. L., Zinn, M. A., & Jason, L. A. (2016). Intrinsic Functional Hypoconnectivity in Core Neurocognitive Networks Suggests Central Nervous System Pathology in Patients with Myalgic Encephalomyelitis: A Pilot Study. Applied Psychophysiology and Biofeedback, 41(3), 283-300. doi:10.1007/s10484-016-9331-3
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).