The efficacy of neurofeedback among patients with major depressive disorder: preliminary study
DOI:
https://doi.org/10.15540/nr.3.3.127Keywords:
major depressive disorder, neurofeedback, electroencephalogram, alpha asymmetryAbstract
Introduction: Alpha asymmetry of the left and right frontal hemisphere is a potential biomarker for major depressive disorder (MDD). Neurofeedback (NFB) is a clinical intervention program for regulating brain activity and decreasing alpha asymmetry. The purpose of this study was to explore the efficacy of NFB among patients with MDD. Methods: Fourteen patients with MDD were randomly assigned to a NFB group that received neurofeedback training 1 hr weekly for 6 weeks and to a control group that was treated without training. A 5-min resting baseline of electroencephalogram (EEG) was recorded at F3 (left) and F4 (right) before and after NFB, and the alpha power was analyzed as an asymmetry index (A1). Results: The A1 of the control group decreased from pre- to post-interventions while the A1 of the NFB group increased from pre- to post-interventions. Anxiety and depression scores of the responder group decreased from pre- to post-interventions, while the scores of the non-responder group increased from pre-to post-interventions. Conclusion: Patients who respond to the NFBtraining showed a decrease in anxiety and depression scores compared to those who do not. This study indicated that NFB could improve left frontal hypoarousal or right frontal hyperarousal among patients with MDD.
References
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Washington, DC: Author.
Baehr, E., Rosenfeld, J. P., &Baehr, R. (1997). The clinical use of an alpha asymmetry protocol in the neurofeedback treatment of depression: Two case studies. Journal of Neurotherapy, 2(3), 10–23.http://dx.doi.org/10.1300/J184v02n03_02
Baehr, E., Rosenfeld, J. P., &Baehr, R. (2001). Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. Journal of Neurotherapy, 4(4), 11–18. http://dx.doi.org/10.1300/J184v04n04_03
Baehr, E., Rosenfeld, J. P., Baehr, R., & Earnest, C. (1998). Comparison of two EEG asymmetry indices in depressed patients vs. normal controls. International Journal of Psychophysiology, 31(1), 89–92. http://dx.doi.org/10.1016 /S0167-8760(98)00041-5
BioGraph Infiniti (Version 6.1.1)[Computer software]. Montreal, QC, Canada: Thought Technology Ltd.
BrainAvatar(Version 4.0) [Computer software]. Bedford, OH: BrainMaster Technologies, Inc.
Bruder, G. E., Fong, R., Tenke, C. E., Leite, P., Towey, J. P., Stewart, J. E., ... Quitkin, F. M. (1997). Regional brain asymmetries in major depression with or without an anxiety disorder: A quantitative electroencephalographic study. Biological Psychiatry, 41(9), 939–948. http://dx.doi.org/10.1016 /S0006-3223(96)00260-0
Cantisani, A., Koenig, T., Horn, H., Müller, T., Strik, W., & Walther, S. (2015). Psychomotor retardation is linked to frontal alpha asymmetry in major depression. Journal of Affective Disorders, 188, 167–172. http://dx.doi.org/10.1016 /j.jad.2015.08.018
Choi, S. W., Chi, S. E., Chung, S. Y., Kim, J. W., Ahn, C. Y., & Kim, H. T. (2011). Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology, 63(1), 43–51. http://dx.doi.org/10.1159 /000322290
Coan, J. A., & Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1–2), 7–50. http://dx.doi.org/10.1016 /j.biopsycho.2004.03.002
Davidson, R. J. (1984). Affect, cognition, and hemispheric specialization. In C. E. Izard, J. Kagan, & R. B. Zajonc (Eds.), Emotions, Cognition, and Behavior (pp.320–365). New York: Cambridge University Press.
Davidson, R. J. (1993). Cerebral asymmetry and emotion: Conceptual and methodological conundrums. Cognition and Emotion, 7(1), 115–138. http://dx.doi.org/10.1080 /02699939308409180
Davidson, R. J. (1998). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35(5), 607–614. http://dx.doi.org/10.1017/S0048577298000134
Debener, S., Beauducel, A., Nessler, D., Brocke, B., Heilemann, H., &Kayser, J. (2000). Is resting anterior EEG alpha asymmetry a trait marker for depression? Neuropsychobiology, 41(1), 31–37.http://dx.doi.org/10.1159 /000026630
Delorme, A., &Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. http://dx.doi.org/10.1016 /j.jneumeth.2003.10.009
Dias, Á. M., & van Deusen, A. (2011). A new neurofeedback protocol for depression. The Spanish Journal of Psychology, 14(1), 374–384. http://dx.doi.org/10.5209 /rev_SJOP.2011.v14.n1.34
Ebrahim, S., Bance, S., Athale, A., Malachowski, C., & Ioannidis, J. P. A. (2016). Meta-analyses with industry involvement are massively published and report no caveats for antidepressants. Journal of Clinical Epidemiology, 70, 155–163.http://dx.doi.org/10.1016/j.jclinepi.2015.08.021
Gotlib, I. H., Ranganath, C., & Rosenfeld, J. P. (1998). Frontal EEG alpha asymmetry, depression, and cognitive functioning. Cognition and Emotion, 12(3), 449–478. http://dx.doi.org /10.1080/026999398379673
Hammond, D. C. (2005). Neurofeedback treatment of depression and anxiety. Journal of Adult Development, 12(2), 131–137. http://dx.doi.org/10.1007/s10804-005-7029-5
Heller, W., Etienne, M. A., & Miller, G. A. (1995). Patterns of perceptual asymmetry in depression and anxiety: Implications for neuropsychological models of emotion and psychopathology. Journal of Abnormal Psychology, 104(2), 327–333. http://dx.doi.org/10.1037/0021-843X.104.2.327
Kemp, A. H., Griffiths, K., Felmingham, K. L., Shankman, S. A., Drinkenburg, W., Arns, M., ... Bryant, R. A. (2010). Disorder specificity despite comorbidity: Resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biological Psychology, 85(2), 350–354. http://dx.doi.org/10.1016/j.biopsycho.2010.08.001
Le Noury, J., Nardo, J. M., Healy, D., Jureidini, J., Raven, M., Tufanaru, C., &Abi-Jaoude, E. (2015). Restoring Study 329: Efficacy and harms of paroxetine and imipramine in treatment of major depression in adolescence. BMJ, 351(h4320), 1¬–16. http://dx.doi.org/10.1136/bmj.h4320
Linden, M., Habib, T., &Radojevic, V. (1996). A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities. Biofeedback and Self-Regulation, 21(1),35–49.
Malkowicz, D., & Martinez, D. (2009). Role of quantitative electroencephalography, neurotherapy, and neuroplasticity in recovery from neurological and psychiatric disorders. Journal of Neurotherapy, 13(3), 176–188. http://dx.doi.org/10.1080 /10874200903127049
MATLAB (Release 2008a) [Computer software]. (2008). Natick, MA: The Math Works, Inc. Retrieved from: http://www.mathworks.com/products/new_products/release2008a.html
Peeters, F., Oehlen, M., Ronner, J., van Os, J., &Lousberg, R. (2014). Neurofeedback as a treatment for major depressive disorder — A pilot study. PloSONE, 9(3), e91837. http://dx.doi.org/10.1371/journal.pone.0091837
Quinn, C. R., Rennie, C. J., Harris, A. W. F., & Kemp, A. H. (2014). The impact of melancholia versus non-melancholia on resting-state, EEG alpha asymmetry: Electrophysiological evidence for depression heterogeneity. Psychiatry Research, 215(3), 614–617. http://dx.doi.org/10.1016 /j.psychres.2013.12.049
Rosenfeld, J. P. (2000). An EEG biofeedback protocol for affective disorders. Clinical EEG and Neuroscience, 31(1), 7–12.http://dx.doi.org/10.1177/155005940003100106
Rosenfeld, J.P., Baehr, E., Baehr, R., Gotlib, I.H., &Ranganath, C. (1996). Preliminary evidence that daily changes in frontal alpha asymmetry correlate with changes in affect in therapy sessions. International Journal of Psychophysiology, 23(1–2), 137–141.http://dx.doi.org/10.1016/0167-8760(96)00037-2
Shellenberger, R., & Green, J. A. (1986). From the ghost in the box to successful biofeedback training. Greeley, CO: Health Psychology Publications.
Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. B. (2011). Frontal EEG asymmetry during emotional challenge differentiates individuals with and without lifetime major depressive disorder. Journal of Affective Disorders, 129(1–3), 167–174. http://dx.doi.org/10.1016/j.jad.2010.08.029
Zuberer, A., Brandeis, D., &Drechsler, R. (2015). Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity. Frontiers in Human Neuroscience, 9(135), 1–15. http://dx.doi.org /10.3389/fnhum.2015.00135
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).